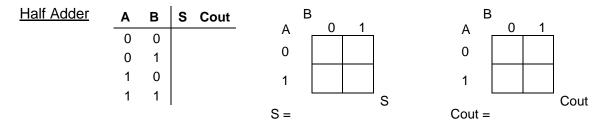
Problem Set #9

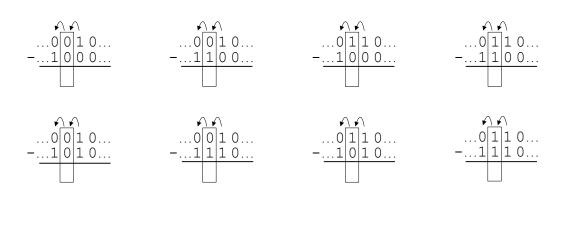


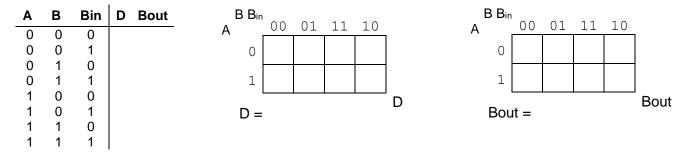
1. (12 points) Sketch a block diagram for a magnitude comparator **bit-slice circuit**. Create K-maps to define the bit-slice circuit, and use them to find optimal logic equations. Sketch the bit-slice circuit.

 (12 points) Modify the bit-slice block of problem 1 by removing the logic gates and signals that form the EQ output. Sketch a "block" circuit diagram for a 4-bit comparator that uses the modified bit slice blocks, and add a single gate to form the EQ output from the LT and GT outputs from the MSB (most significant bit).

(4 points) Could you make the bit-slice modules even more efficient by leaving in the EQ logic and removing some other logic? Explain.

3. (10 points) Complete truth tables and K-maps for HA and FA circuits, using XOR patterns where appropriate. Loop minimum SOP equations, and sketch the circuits (assume all inputs and outputs are active high).


Full Adder


Α	в	Cin	s	Cout	ВC		0.1		1.0			B Cir		0.1		1.0	
			•	oout	А	00	01	11	10	-	Α		00	01	11	10	
0	0	0			0							0					
0	0	1			0							0					
0	1	0			1							1					
0	1	1			~				1	S		~				1	Cout
1	0	0			S	=						Col	ut =				
1	0	1															
1	1	0															
1	1	1															

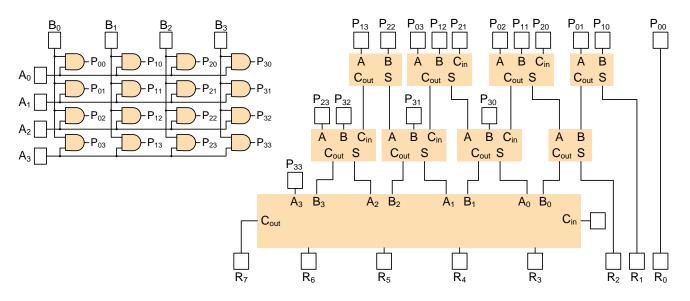
4. (10 points) Sketch a block diagram for a full adder using two half-adder blocks and an OR gate.

5. (8 points) Sketch an entire Carry-Propagate-Generate circuit that can form the carry-ins for all four bits of 5-bit CLA.

6. (20 points) Design a full-subtractor bit-slice circuit (Borrow-Ripple Subtractor). Label the inputs A, B, and Bin, and label the outputs D and Bout. Start by completing the subtraction examples, then complete the truth table and K-maps, and then sketch the circuit.

7. (8 points) Complete the number conversions indicated. Note that all binary numbers are two's complement representations.

-19_D = ______B 10011010_B = ______D 10000000 = ______D -101_D = ______B


8. (22 points) Complete the four 2's compliment arithmetic problems below assuming that all operations use an adder. Showing both the decimal and binary numbers in each case.

17 - 11	0 0 0 0 1 0 0 0 1 + 1 1 1 1 1 0 1 0 1	-22 + 6 +
35 - 42	+	19 (-7) _+
	10100110 + 11110101	Is the answer to the equation on the left correct in 8 bits? Explain.

9. (10 points) Sketch a circuit to convert a 4-bit binary number to its 2's complement representation using only 3 XOR/XNOR gates and 2 AND or OR gates.

10. (8 points) Examine several examples of addition overflow and subtraction underflow, and sketch a circuit below that can output a '1' whenever an addition or subtraction result is incorrect due to underflow or overflow. Assume that both operands and result of the addition and subtraction are N-bits. (Hint: compare the carry in and carry out signals of the most-significant bit).

11. (16 points) Fill in the squares below to show all signal values when "1101" and "1010" are multiplied.

