ELF and Linker Script

ELF (*.elf) File

The Xilinx SDK uses the ARM GCC
compiler/assembler.

- S v % v oW = B B & %0 - A ¥
“ ” _ |
The GCC tOOIS assem ble (Or prcceSS) © Project Explorer & - ’ 2 System Debugger using Debug_debug.elf on Local
. v SUdm-"”“—tESt 3 System Debugger using Debug_audio_intr_test.elf on Local
» 35 Binari
your source code to produce a .elf file :Z
O . . ¥ = Debug = 105
Organize Favorites...
that contains the binary/machine code. -« T e g o
T CONTENTS, ALLOC, LOAD, REAL
audio_intr_test.elf.size 1 .init 00000818 00106434 BO1064:

CONTENTS, ALLOC, LOAD, REAL

This executable binary code can be v P e e

_ 3 .rodata 00000554 00106468 0O1064¢
sources.mk CONTENTS, ALLOC, LOAD, REAIL

loaded in memory and executed by the |« ho e guithe, St

¥
& src 5 .eh frame 00000B04 0O10788C 0O1078E
» [audio.c CONTENTS, ALLOC, LOAD, REAL
p rocesso r‘ » @ audio.h 6 .mmu_thl 00004000 00108000 0O1086€
[] . CONTENTS, ALLOC, LOAD, REAL
» [g main.c 7 .init array 00000004 0010cAA® OO10CHE
CONTENTS, ALLOC, LOAD, DATZ

8l Iscript.ld 8 .fini array 00000004 0010c084 0O10cOE

[] [] [] []
README.ExE CONTENTS, ALLOC, LOAD, DAT?
But what is .elf file, and how is it ;
(]) # Xilinx.spec CONTENTS, READONLY
generated?

- 18 ke AAAAQONA OATA-A00 AA1A-OF

“Executable and Linkable File” format (.elf)

ELF is the standard format for executable files, ELF header
object code, shared libraries, and core dumps. |

Program header table
ELF files are flexible, extensible, cross-platform,

and not bound to any CPU or instruction set. text

ELF files have been adopted by many different
operating systems on many different hardware
platforms.

rodata

data >

Section header table

http://www.cirosantilli.com/elf101.png

Reference: Wikipedia — Executable and Linkable Format
https://en.wikipedia.org/wiki/Executable_and_Linkable Format

http://www.cirosantilli.com/elf101.png

Sections

“Programs” are divided into segments, or sections of
memory. The ELF file defines and uses the segments for
general organization purposes.

The .text section contains opcodes (executable
statements). The size is fixed by assembler/compiler. It
is (typically) read only, may be loaded in ROM.

The .data segment contains initialized static variables,
global variables, and static local variables. Size is fixed
by assembler/complier; data in this segment may be
read and written. The .rodata (read only data - if
present) segment contains static constants.

High
Memory

Low
Memory

Stack

Heap

Bss

Data

Text

Total Allocated Program Memory

Sections

The .bss section (“block started by symbol”) contains
uninitialized statically allocated variables. It is a
read/write data segment, with size fixed at
assemble/compile time, that is set aside for known
needs. Only its size is stored in .elf file.

The .heap section is for run-time allocated dynamic
memory needs. It typically begins at end of .bss and
grows into larger memory.

The .stack section is for run-time, dynamically allocated
memory used for passing parameters between
subprograms and storing local context. It typically
starts in high memory and grows towards heap.

High
Memory

Low
Memory

Stack

Heap

Bss

Data

Text

Total Allocated Program Memory

Sections

Many Assemblers define additional sections as well to
define areas of memory for initialization data, or
operating parameters.

Sections are used to organize the source file.
Historically, there was some correlation between
sections on memory requirements (RAM, ROM, high-
speed, off-line, etc.). In a large, flat/uniform memory
space, they are really just “organizational artifacts”, or
labels identifying code segments and data areas.

High
Memory

Low
Memory

Stack

Heap

Bss

Data

Text

Total Allocated Program Memory

Assembler

The Assembler reads your source file, resolves references, replaces mnemonics
with opcodes, and produces some or all of the sections of an ELF file.

The ELF file can be directly executed after it is loaded into main memory.

The assembler passes through your code twice: once to make a symbol
table, and a second time to replace mnemonics, labels and references with
opcodes.

A symbol table is not executable. It is a reference table that is built by associating all
labels and section-identifying directives with “virtual” addresses (virtual addresses may
be adjusted by adding a constant when the program is actually placed in memory).

An .elf file example for an ARM Program

In Xilinx SDK, you can open and read the
elf file.

The program shown on the right has 21
segments defined (this is the default for
.elf files prepared by SDK). The .elf file
shows the size and memory location of
each segment.

Segment information is used to correctly
place your program in memory, and to
help ensure you do not make obvious
mistakes.

v

»

»

1 Project Explorer &2 =

> audio_intr_test
» ¥ Binaries
» i Includes
¥ & Debug
> = src
» 5 audio_intr_test.elf - [arm/le]
audio_intr_test.elf.size
makefile
objects.mk
sources.mk
Xilinx.spec
v src
*» |g audio.c
» [n audio.h
» [g main.c
R’ Iscript.ld
README.txt
Xilinx.spec
=5 audio_test
> debug
& system_bsp

system_wrapper_hw_platform_0

a

o audio_intr_test.elf 22

1 .1init
CONTENTS,
2 .fini 00000018
CONTENTS,
3 rodata 0000
CONTENTS,
4 .data 00000
CONTEN
5 .eh frame
6 .mmu_tbl

CELELEEEEES
CONTENTS

attributes

9 .ARM,

10 .bss

11 .heap

12 .stack

13 .comment

14 .debug info

15 .debug abbrev ©¢ 04d7
CONTENTS,

16 .debug aranges 00000040
CONTENTS,

17 .debug macro 00003bdf
CONTENTS,

18 .debug line 0000¢

CONTENTS,

VMA

00000000
READONLY
000008

READONLY,

000006000

READONLY,
00000000
READONLY,

00000¢
READO

READONLY,

00000000

READONLY,

LMA

0016c

@

0010e8a0

00000000

DEBUGGING

00000000
DEBUGGING
O)€

¢ 00
DEBUGGING

00100000 001000600)
ALLOC, LOAD, READONLY,
00106434 0O 6434 0001643
ALLOC, LOAD, READONLY, CODE
0010644« 0010644c 0001644c
ALLOC, LOAD, READONLY,)DE
00106468 00106468 00016468
ALLOC, LOAD, READONLY, DATA
001069cO 001069 000169c0
ALLOC LOAD, DATA

00 { 0010788c¢ 06817 C
ALL LOAD, READONLY, DATA
00108000 00108000 00018000
Al LOAD, READONLY, DATA
001€ 00 ©0010cO0O0 06001cHOO
ALLOC, LOAD, DATA

P010cHP4 ©0O0106cPO4 ©0001cO04
ALLOC, LOAD, DATA

3 0018 0010c068 ©0001c008
READONLY

0010c008 00106c0O8 0001co08

0001c008

0001c008

0001cO3b

0601cH71

0001d981

0001de

0001de98

00021a77

000223d6

0003327c¢

N

2%

Linker (LD) and linker script (.Id)

Linker (LD) is a program that combines one or more object files
(compiled/assembled source code files generated by the
compiler/assembler) and combines them into an executable/binary file
(the .elf file).

The Linker script (usually a file with .Id extension) includes information
needed by the linker, including the memory locations of each segment.
Segment physical addresses are needed so your source code can be
properly located in physical memory (so the processor can access and
execute it).

The debugger also uses segment information to access and display
relevant memory dumps.

A Simple Linker Script

The file on the right shows a simple linker
script. The SECTIONS area defines the

location of each section: SECTIONS {
* Code (text) segment starts at 0Ox10000 . = 0x10000;
» Data segment starts at 0x8000000 .text @ { *(.text) }
* Unintialized data segment starts after the data = 0x8000000;
segment : .data : { *(.data) }
| .bss : { *(.bss) }
}

Reference: binutils 2.29 documentation - 3.3 Simple Linker Script Example
https://sourceware.org/binutils/docs/1d/Simple-Example.html#Simple-Example

Example in Xilinx SDK

A linker script (usually named 1script.1d)
is placed in your project directory.

You can open the linker script by double
clicking the file. SDK will parse the basic
information in the file and load it in a table as
shown on the right.

The linker script defines all available memory
regions, and defines the location of all
program sections in the memory regions.

You can edit the default linker script
information (for example, you can change the
size of Stack and Heap).

T U © U Z
won i
4 ~ (3

.ctors

TTTTUTUTTETTUTTETUTETTTTOETTETUTETOEO I
o om oA W b @ on BB R W A R W A
- ~

7_ddr_0
7_ddr_0
7_ddr_0
s7_ddr_0
7_ddr_0
7_ddr_0
s7_ddr_0
s7_ddr_0
7_ddr_0
s7_ddr 0
s7_ddr_0
7_ddr_0
s7_ddr_0
s7_ddr_0
7_ddr_0
s7_ddr_0
7_ddr_o
7_ddr_0

i ps7 ddr 0

| OXFFFF0000

| OXFE0O

Example in Xilinx SDK

You can also click the “source” tab to view the
linker script in a text editor.

The MEMORY area specifies the size of volatile
and non-volatile memory in the system.

The SECTIONS area specifies segment
locations. For example, the code (text) section
iIs mappedtops’7 ddr O which starts at
0x100000 with a size of Ox1FFO000O.

T Iscript.ld 22

3 IN = 0x100000, LENGTH = Ox
r ® : ORIGIN =
J Ox0, LENGTH Ox360000
: ORIGIN =

Lne sec

> LiliEa
im_© ORIGIN

OxFCOO0000, LENGT = Ox10000086

OxFFFFO000, LENGTH = OxFEO0O

entry po

1nt to the proqram */

The Process...

Your source files are created and assembled/complied into an .elf file. Since
the .elf file can be executed, all external references and relative label
addresses must be resolved (i.e., associated with a physical address).

The .elf files can be emulated, or executed on the target hardware.

Before an .elf file can be executed, it must be placed in memory so that the
processor can jump to the first instruction. This is the linkers job: the linker
(loader) places code according to segment definitions, and loads (links) any
other external programs and determines all needed physical addresses for

entry points.

The IDE (SDK) lets you “run” your program after it is loaded. The run
command generates a software interrupt that causes the processor to
execute an instruction from a fixed location — and that instruction is a jump
to the first instruction of your code (more on this later).

