
ELF and Linker Script

ELF (*.elf) File

The Xilinx SDK uses the ARM GCC
compiler/assembler.

The GCC tools “assemble” (or process)
your source code to produce a .elf file
that contains the binary/machine code.

This executable binary code can be
loaded in memory and executed by the
processor.

But what is .elf file, and how is it
generated?

“Executable and Linkable File” format (.elf)

ELF is the standard format for executable files,
object code, shared libraries, and core dumps.

ELF files are flexible, extensible, cross-platform,
and not bound to any CPU or instruction set.

ELF files have been adopted by many different
operating systems on many different hardware
platforms.

http://www.cirosantilli.com/elf101.png

Reference: Wikipedia – Executable and Linkable Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

http://www.cirosantilli.com/elf101.png

Sections

“Programs” are divided into segments, or sections of
memory. The ELF file defines and uses the segments for
general organization purposes.

The .text section contains opcodes (executable
statements). The size is fixed by assembler/compiler. It
is (typically) read only, may be loaded in ROM.

The .data segment contains initialized static variables,
global variables, and static local variables. Size is fixed
by assembler/complier; data in this segment may be
read and written. The .rodata (read only data - if
present) segment contains static constants.

Stack

Text

Data

Bss

Heap

Low
Memory

High
Memory

To
ta

l A
llo

ca
te

d
 P

ro
gr

am
 M

em
o

ry

Sections

The .bss section (“block started by symbol”) contains
uninitialized statically allocated variables. It is a
read/write data segment, with size fixed at
assemble/compile time, that is set aside for known
needs. Only its size is stored in .elf file.

The .heap section is for run-time allocated dynamic
memory needs. It typically begins at end of .bss and
grows into larger memory.

The .stack section is for run-time, dynamically allocated
memory used for passing parameters between
subprograms and storing local context. It typically
starts in high memory and grows towards heap.

Stack

Text

Data

Bss

Heap

Low
Memory

High
Memory

To
ta

l A
llo

ca
te

d
 P

ro
gr

am
 M

em
o

ry

Sections

Many Assemblers define additional sections as well to
define areas of memory for initialization data, or
operating parameters.

Sections are used to organize the source file.
Historically, there was some correlation between
sections on memory requirements (RAM, ROM, high-
speed, off-line, etc.). In a large, flat/uniform memory
space, they are really just “organizational artifacts”, or
labels identifying code segments and data areas.

Stack

Text

Data

Bss

Heap

Low
Memory

High
Memory

To
ta

l A
llo

ca
te

d
 P

ro
gr

am
 M

em
o

ry

Assembler

The ELF file can be directly executed after it is loaded into main memory.

A symbol table is not executable. It is a reference table that is built by associating all
labels and section-identifying directives with “virtual” addresses (virtual addresses may
be adjusted by adding a constant when the program is actually placed in memory).

The Assembler reads your source file, resolves references, replaces mnemonics
with opcodes, and produces some or all of the sections of an ELF file.

The assembler passes through your code twice: once to make a symbol
table, and a second time to replace mnemonics, labels and references with
opcodes.

An .elf file example for an ARM Program

In Xilinx SDK, you can open and read the
.elf file.

The program shown on the right has 21
segments defined (this is the default for
.elf files prepared by SDK). The .elf file
shows the size and memory location of
each segment.

Segment information is used to correctly
place your program in memory, and to
help ensure you do not make obvious
mistakes.

Linker (LD) and linker script (.ld)

Linker (LD) is a program that combines one or more object files
(compiled/assembled source code files generated by the
compiler/assembler) and combines them into an executable/binary file
(the .elf file).

The Linker script (usually a file with .ld extension) includes information
needed by the linker, including the memory locations of each segment.
Segment physical addresses are needed so your source code can be
properly located in physical memory (so the processor can access and
execute it).

The debugger also uses segment information to access and display
relevant memory dumps.

A Simple Linker Script

The file on the right shows a simple linker
script. The SECTIONS area defines the
location of each section:

• Code (text) segment starts at 0x10000

• Data segment starts at 0x8000000

• Unintialized data segment starts after the data
segment.

SECTIONS {

. = 0x10000;

.text : { *(.text) }

. = 0x8000000;

.data : { *(.data) }

.bss : { *(.bss) }

}

Reference: binutils 2.29 documentation – 3.3 Simple Linker Script Example
https://sourceware.org/binutils/docs/ld/Simple-Example.html#Simple-Example

Example in Xilinx SDK
A linker script (usually named lscript.ld)
is placed in your project directory.

You can open the linker script by double
clicking the file. SDK will parse the basic
information in the file and load it in a table as
shown on the right.

The linker script defines all available memory
regions, and defines the location of all
program sections in the memory regions.

You can edit the default linker script
information (for example, you can change the
size of Stack and Heap).

Example in Xilinx SDK

You can also click the “source” tab to view the
linker script in a text editor.

The MEMORY area specifies the size of volatile
and non-volatile memory in the system.

The SECTIONS area specifies segment
locations. For example, the code (text) section
is mapped to ps7_ddr_0 which starts at
0x100000 with a size of 0x1FF00000.

The Process…

Your source files are created and assembled/complied into an .elf file. Since
the .elf file can be executed, all external references and relative label
addresses must be resolved (i.e., associated with a physical address).

The .elf files can be emulated, or executed on the target hardware.

Before an .elf file can be executed, it must be placed in memory so that the
processor can jump to the first instruction. This is the linkers job: the linker
(loader) places code according to segment definitions, and loads (links) any
other external programs and determines all needed physical addresses for
entry points.

The IDE (SDK) lets you “run” your program after it is loaded. The run
command generates a software interrupt that causes the processor to
execute an instruction from a fixed location – and that instruction is a jump
to the first instruction of your code (more on this later).

