Digital Logic Course Example Syllabus

Week	Day	Lecture Topics	Project
	1	Class introduction and plan	No Project First Week
1	2	Electric/electronic circuits; voltage, current, & power; power supplies	
	3	Inputs and outputs, switch logic	
	4	Diodes and transistors	Introduction to the Blackboard, Vivado, and Verilog
2	5	CMOS, logic gates and ICs	
	6	Logic circuits, truth tables, representations, SOP & POS forms	
,	7	Logic equations, behavioral vs. structural, basic Verilog	Basic Digital Functions
3	8	The case for minimization, overview of methods, and desired outcomes	
	9	Boolean Algebra	
		K-maps	Basic Combinational Circuits
4		K-maps (large and multiple)	
		K-maps and don't cares	
,		The use of entered variables	Combinational Blocks: Multiplexors, decoders, encoder, shifter/rotator
5	14	The design process; Multiplexors and applications	
	15	Decoders and applications; Mux/Demux circuits	
.		Encoders; shifters	Verilog for Combinational Circuits Circuit Delays and Glitches
6		Review	
		Test 1	
, <u> </u>		Delays and glitches	
7		Electronic memory and basic cells	
		Basic cells, latches and flip-flops	
-		Registers and counters	Latches, Flip-flops, and Registers
8	23	Counters and clock dividers, sequential circuit basics	
		Controlling the Seven-Segment Display	
		Arithmetic circuits: ripple-carry and carry-look ahead adders	Counters, Registers, and the 7Seg Display
9		Negative numbers, encodings, and arithmetic implications	
-	27	Binary and 2's complement subtractors	
· 40 -		Multipliers and Comparators	Adders and Multipliers
10		ALUS	
		Review	
	31 32	Test 2	Arithmetic and Logic Unit (ALU)
11		Sequential circuit overview and architectures State diagrams	
	34	Complete state diagrams, rules, and state codes	Catch up – no new lab
12		State machine implementations	
12		Behavioral implementation of state machines in Verilog	
	37	Stopwatch presentation: BCD counters, controller, and partitioning	A Simple Digital System: Stopwatch
13		Structural implementations of state machines	
15		Reaction time monitor presentation: register files, simple filters	
	40	Clock domains and clocking considerations	A More Involved System: Reaction Time Monitor
14	41	Sampling and processing inputs	
, 		Output signal timing issues	
		Review	
15	44	Holiday	No new lab
-5		· · · · · · · · · · · · · · · · · · ·	