
Serial Peripheral Interface Bus

SPI

SPI Bus

Developed by Motorola in the mid 1980’s

Full-duplex, master-slave serial bus suited to data streaming applications for
embedded systems

Existing peripheral busses (UART, I2C) offered inadequate bandwidth and required
overly complex control

Objectives included low overhead (point-to-point, no “packets” or complex data
framing, synchronous, no complex processor overhead); low cost, small IP blocks;
adequate bandwidth for most sensors (up to 5Mbytes/sec); simple APIs

Lots of IC’s use SPI: ADC, DAC, EEPROM, Flash, QSPI, FRAM, SD, sensors of all kinds,
RTCs, etc. A quick survey showed well more than 1000 low-cost devices

SPI

SPI uses unidirectional, synchronous signals: SDO, SDI, SCLK, and SS.

Only one master that initiates all transactions

SPI
Master

SS
SCLK

MOSI
MISO

SPI
Slave

SS
SCLK
MOSI
MISO

Every slave device requires it’s own Slave Select (SS) signal

SPI

SPI uses unidirectional, synchronous signals: SDO, SDI, SCLK, and SS.

Only one master that initiates all transactions

Every slave device requires it’s own Slave Select (SS) signal

0123456701234567

SPI Contoller SPI Slave

MOSI

MISO

Shift Register SS
EN

SCLK

Shift Register

Master-In Slave-Out (MISO) signal is typically tri-state

Tri-State outputs

SPI

0123456701234567

SPI Contoller SPI Slave

MOSI

MISO

Shift Register SS
EN

SCLK

Shift Register

Data is always transferred in both directions with every bus transaction

Many slaves only produce data – what to write?

Many slaves only consume data – what to read?

Accelerometer, Gyro, compass, temperature, A/D converter, etc.

Motor controller, D/A, LED driver, LCD display, etc.

SPI with multiple slaves

SPI
Master

SS
SCLK

MOSI
MISO

SPI
Slave

SS
SCLK
MOSI
MISO SPI

Master SS0

SCLK
MOSI
MISO

SS1
SS2
SSn

SPI
Master

SS0

SCLK
MOSI
MISO

SPI
Slave

SS

SCLK
MOSI
MISO

SPI
Slave1

SS
SCLK
MOSI
MISO

SPI
Slave

SS

SCLK
MOSI
MISO

SPI
Slave1

SS
SCLK
MOSI
MISO

SPI
Slave2

SS
SCLK
MOSI
MISO

Only one master that initiates all transactions

Every slave device requires it’s own Slave Select (SS) signal

Master-In Slave-Out (MISO) signal is typically tri-state

SPI data protocol…

… there is none.

Every SPI device can have a unique data protocol. Very flexible and powerful, but…

Must read and understand the data sheet.

SPI flow control…

… there is none.

SPI devices must implement their own checks for overflow, timeouts, etc.

Synchronous Communications

SS (almost always active low) starts/defines a data frame. Eight or more clocks per
data frame move data through continuous shift register.

SS

SCLK

0123456701234567

SPI Contoller SPI Slave

MOSI

MISO

Shift Register SS
EN

SCLK

Shift Register

Synchronous Communications
The SPI spec allows for different clock frequencies and different clock polarities.

0123456701234567

SPI Contoller SPI Slave

MOSI

MISO

Shift Register SS
EN

SCLK

Shift Register

SS

SCLK

SCLK

CPOL = 0

CPOL = 1

Imagine a stream of data. Which edge should the slave use to drive the bus? Which
edge should the master use to read the bus?

SPI clock phase
Leading edge vs. next edge

0123456701234567

SPI Contoller SPI Slave

MOSI

MISO

Shift Register SS
EN

SCLK

Shift Register

SS

SCLK

SCLK

CPOL = 0

CPOL = 1

“Inside” current transaction vs. “outside”

SPI “Modes”

SCLK

Bit0 shifted in here

Bit0 shifted out
in previous cycle

SS

MOSI/MISO

Next Bit0 shifted out here;
will be read in next frame

CPOL = 0
CPHA = 0
MODE 0

SCLK

Bit0 shifted out here

Bit0 shifted in here

SS

MOSI/MISO

CPOL = 0
CPHA = 1
MODE 1

SPI “Modes”

SCLK

Bit0 shifted in here

Bit0 shifted out
in previous cycle

SS

MOSI/MISO

Next Bit0 shifted out here;
will be read in next frame

CPOL = 1
CPHA = 0
MODE 2

SCLK

Bit0 shifted out here

Bit0 shifted in here

SS

MOSI/MISO

CPOL = 1
CPHA = 1
MODE 3

SPI relative advantages

• Transmitter and receiver use same clock; a precision clock is not needed.
Period, phase and duty cycle can vary widely, provided the minimum
clock period requirement is met

• No address needed since SPI is point-to-point

• Signals are unidirectional so three state buffers and bus turn-around
circuits are not needed

• Any data size can be used (not just 8 bits)

• No arbitration or clock extraction is needed since the clock is included in
the bus

• No special transceivers are needed – SPI signals are simple logic-level
signals

SPI relative disadvantages

• Since the bus is point-to-point, more pins are required to interface with
more devices

• The SPI protocol does not include flow control, data acknowledge, or
error checking, so the master has no good way to know whether data was
accurately sent and received

• Only one master is defined, so the bus cannot be shared

So… is SPI a good choice?

QSPI

As SPI became more popular, it’s bandwidth limitation (about 5MBytes)
began to be recognized (particularly for mass-store devices)

But, low pin-count is very desirable.

QSPI: 4 data pins (everything else is the same) in 8-pin package (don’t
forget Vdd and GND!)

SS
SCLK

MOSI (D1)
MISO (D0)

WP (D2)
Reset (D3)

SD cards

Secure Digital cards: very small, power efficient, low-cost, popular

UHS-1 and USH-2

SD/SDIO physical pins are more or less QSPI, but protocol is unique
Default speed: 25MHz; High speed 50MHz
Spec is free!

UHS-2

Same pinout and form-factor as SD

Single-ended I/O at up to 104MHz

Adds more pins

Adds differential signaling at lower voltages (1.8V)

Adds DDR option

SPI on ZYNQ

Two independent SPI
controllers

Can use MIO pins or EMIO (via
FPGA) pins

FPGA

Memory-mapped peripheral using AXI bus

Name Function Address Bits
CR (Configuration Register) SPI Configuration (enables, setups) 0x 0000 0000 18
SR (Status Register) Interrupt Status (FIFO underflow, full, not empty, etc.) 0x 0000 0004 7
IER (Interrupt Enable Reg.) Enables possible interrupt sources 0x 0000 0008 7
IDR (Interrupt Disable Reg.) Disables possible interrupt sources 0x 0000 000C 7
IMR (Interrupt Mask Reg.) Mask bits for possible interrupt sources 0x 0000 0010 7
ER (Enable Register) Enable SPI controller 0x 0000 0014 1
DR (Delay Register) Set various intra-frame delays 0x 0000 0018 32
TXD (Transmit Data) SPI write data port (128 byte FIFO) 0x 0000 001C 8
RXD (Receive Data) SPI read data port (128 byte FIFO) 0x 0000 0020 8
SICR (Slave Idle Count) Set time in quiescent state before start detected 0x 0000 0024 8
TXWR (Transmit FIFO level) Set transmit FIFO not full level 0x 0000 0028 7
RX_thres_req0 (Receive level) Set receive FIFO not empty level 0x 0000 002C 7
Mod_id_reg0 (Module ID) Read-only module ID number 0x 0000 00FC 6

SPI Configuration and Status Registers

ZYNQ’s UART FIFOs

TXD and RXD path have 64-byte FIFOs

MOSI MISO

To ARM

FIFO empty

FIFO full

Not Full level

FIFO empty

FIFO full

Not Empty level

SPI FIFOs

12
8

By
te

s

Transmit
FIFO

Receive
FIFO

Shift Registers

From ARM

0x0000 001C 0x0000 0020

ZYNQ’s SPI Status Register

Name Function Bit#
MF_GEN_EN Modefail generation enable 17
CR Manual start command 16
MAN_START Manual start enable 15

CS
Manual CS 15

PERI_SEL
Peripheral Select (SS) lines 10-13

REF_CLK
External peripheral select decode 9

BAUD_RATE
Master reference clock select (0 for SPI Ref Clock) 8
Baud Rate Divider 3-5

MANUAL_CS

CPHA
CPOL

Clock Phase (1: inactive outside word, 0: active) 2
Clock Polarity (1: quiescent high, 0: quiescent low) 1

Bits in SPI Status Register

MSTREN Mode Select (1: master, 0: slave) 0

ZYNQ SPI Configuration

Name Function Bit#
MF_GEN_EN Modefail generation enable 17
CR Manual start command 16
MAN_START Manual start enable 15

CS
Manual CS 15

PERI_SEL
Peripheral Select (SS) lines 10-13

REF_CLK
External peripheral select decode 9

BAUD_RATE
Master reference clock select (0 for SPI Ref Clock) 8
Baud Rate Divider 3-5

MANUAL_CS

CPHA
CPOL

Clock Phase (1: inactive outside word, 0: active) 2
Clock Polarity (1: quiescent high, 0: quiescent low) 1

Bits in SPI Configuration Register

MSTREN Mode Select (1: master, 0: slave) 0

ZYNQ SPI Configuration

Name Function (definitions for ‘1’ bit) Bit#
TXUF
RXFULL

Tx FIFO Underflow detected 6

RXNEMPTY
Rx FIFO Full 5

TXFULL
Rx FIFO has more entries 4

TXOW
Tx FIFO Full 3

MODF
Tx FIFO Not Full 2

RXOVR
Incorrect mode detected 1
Receiver Overflow interrupt clear 0

SPI Interrupt Functions

Baud Generator

SCK = 166MHz / 2 n + 1

where n is defined by bits 5:3 in configuration register

Divisor
(Bits 5:3 in config. register)

CPU_1xClk
(166 MHz) SCK

Configuring the SPI controller

The SPI controller is a “protected resource”, so access must be unlocked.

“System Level Control Registers” control access to most on-board
peripherals.

Access is unlocked by writing “DF0D” to address 0xF800 0002
(this is fixed by chip designers)

After unlocking, SPI system can be reset, and then it can be configured

Configuring the SPI controller

#define MOD_RESET_BASEADDR 0xF8000000

void SPI_reset() {
uint32_t register_value;
*((uint32_t *) MOD_RESET_BASEADDR+0x8/4) = 0x0000DF0D; // unlock the SLCRs
*((uint32_t *) MOD_RESET_BASEADDR + 0x0000021C/4) = 0xF; // Reset SPI0
*((uint32_t *) MOD_RESET_BASEADDR + 0x0000021C/4) = 0; // Release the reset

return;
}

Configuring ZYNQ’s SPI Controller

1. Enable ModeFail generation;
2. Set Manual Start Command to 0;
3. Set Manual Start Enable to Auto mode;
4. Enable Manual CS (CS is used here for SS);
5. Set CS to 0xF to de-assert all the slave selects before the start of transfers;
6. Set Peripheral select decode to only 1 of 3 selects;
7. Set the Master Reference Clock Select to SPI Reference Clock (166.66666MHz)
8. Set Baud Rate Division value to 32 to select an SPI SCLK frequency below 10MHz as

required by the inertial module (see the inertial module data sheet for more
information);

9. Use SPI Mode 3 by setting the clock phase to “clock is inactive outside the word” and
the polarity to quiescent high (CPOL = 1 & CPHA =1);

10. Select SPI in the master mode.

ZYNQ’s Inertial Module

The Blackboard includes an LSM9DS1 inertial module from ST Microelectronics

The LSM9DS1 includes:
• a 3-axis accelerometer (linear acceleration)
• a 3-axis gyro (angular rate of change)
• a 3-axis magnetometer (magnetic field strength)

The LSM9DS1 is connected to SPI0 through the EMIO interface

ZYNQ’s Inertial Module

The LSM9DS1 uses two SS signals: one for ACC/Gyro, one for Mag (must drive
SS signals independently)

SCLK

SS A/G

MISO M

MISO A/G

INT A/G
INT M

MOSI

SS M

LSM9DS1

A/G SPI

M SPI

Interrupt
signals

ZYNQ’s Inertial Module

The LSM9DS1 SPI interface can use an SCLK up to 10MHz

All transfers are 16-bits

Write: set R/W bit, send register address, then data

Read: set R/W bit, send register address, then 0x00

ZYNQ’s Inertial Module

1. Enable the SPI Controller by writing to the ZYNQ/SPI ER register;

2. Assert the Accelerometer/Gyro SS signal by writing “1110” to the CS bit field in the
Configuration Register (or to read magnetometer data, assert it’s SS by writing 1101
to those same bits);

3. Move data through the SPI registers by writing the R/W bit, register address, and
0x00 (16 bits total) to the transmit FIFO;

4. Poll on Transmitter FIFO Underflow using the SPI0 SR register;

5. Read the two data bytes from the receive data FIFO;

6. Disable controller SPI controller (again using the ER register)

7. De-assert the SS signal (by writing 0xF to the CS bit fields in the Configuration
register.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31

