ZYNQ/ARM
Interrupt Controller

Events, Exceptions (faults), and Interrupts

Events are expected or unexpected signals that indicate a new situation may
need immediate attention. Events include:

Fault conditions, like a processor trying to read or write non-existent
memory, or trying to execute an illegal or unimplemented instruction.

Hardware-generated interrupt service requests that result from a peripheral
needing urgent attention due to data needing to be transferred, or a fault
condition needing to be addressed.

Software-generated interrupt service requests that result from user code
requesting access to a protected resource.

Events, Exceptions (faults), and Interrupts

Some events do not require immediate attention. These events may set a
status bit, or record some data, and remain “pending” (or awaiting service)
until the processor gets around to checking on and servicing them.

Some events do require immediate attention, and these generate exceptions
or interrupts.

“Exceptions” generally refer to unexpected events that are generated as
a result of program execution, or from hardware faults (like power-fail).

“Interrupts” generally refer to signals asserted by peripherals that need
urgent attention, or by user programs that need access to protected
resources.

Interrupts

Interrupts generally arise from peripheral circuits that have produced new
data that needs to be consumed in a timely fashion (i.e., before another new
data point comes along), or that need new data to continue operations.

Consider a keyboard key press. If a new keypress arrives every 250ms, the
ARM processor running at 600MHz can do roughly 150 million instructions

between key presses.

Consider a sensor measuring motion, or light intensity, or temperature, or...
Most sensors use a relatively low data rate, and so don’t need constant
attention. Data typically gets to the CPU via a serial bus.

Bus controllers also commonly generate interrupts (why)?

SPl is a point-to-point serial bus that can run up to about 50MHz, for a peak
data rate of around 5Mbytes/second. Most run slower, and most “burst” to
get a few bytes, and then are dormant for some time.

Common uses include sensors, actuators, ADCs, DACs in embedded systems

12C has one master and up to 1000 “slaves”, and can run up to 5MHz (most
run < 100KHz). That’s a data rate of 500Kbytes to 10Kbytes per second.

Common uses include low-rate sensors, motor controllers, channel setup

UART can run up to 200KHz, or 20KBytes/second.

These busses are discussed in an upcoming presentation...

With ZYNQ, GPIO’s from
the MIO pins or from
the FPGA can generate
Interrupts.

FPGA-based IP blocks
can also generate
Interrupts.

All on-board peripherals
can generate interrupts

Zynq-7000 All Programmable SoC

T
L3

3

:

0 Processing System
Peripherals Application Processor Unit
G CIOCT, Reset SWDT PP AL L L L E L LK |
/ usB eneration - FPU and NEON Engine |I| FPU and NEON Engine ||
>3 use | | 2xUsB TTe ' ARM Cortex-A9 |.
52 : mmu | ARM CPU |I] mmu |
GigE | | 2% GigE System- I CPU |
51 GigE | [2x SD Level 32 KB 32KB |[l| 32KB 32KB |l
SD Control I-Cache D-Cache |l| I|-Cache D-Cache ||
SDIO |RQ Regs I L ——— =
50 SD = QGIC Snoop Controller, AWDT, Timer -
S]le) Yvy I I
o GPIO| |- |« DMASB 512 KB L2 Cache & Controller
— UART Channel
= UART | | A
18 gm ocM 256K
17 5C > Interconnect | SRAM '
16 12C A Memory
SPI Central Interfaces
2 SPI Interconnect DDR2/3
COI'ESight DDHSL‘
Cl) T Irw:r;gggs Components LPDDR2
\ SRAM/ Controller
=
NOR
-} DAP
ONFI 1.0 ' : ‘ A
NAND - DevC Programmable Logic to
Q-SPI Memory Interconnect
ylemd vy ¢4 F 1§ 1
EMIO XADC General-Purpose DMA IRQ Config High-Performance Ports ACP
. Ports Sync AES/ .
12-Bit ADC g SHA Programmable Logic
SelectlO
Resources
FPGA

Fault conditions can also cause interrupts.

Faults are unexpected events that occur during instruction execution. For
example, a program could attempt to read or write a non-existent memory
location, or attempt to execute and unimplemented instruction.

In either case, processing cannot continue, and a context switch is required.

In many contexts, faults that occur during instruction stream execution are
called exceptions or traps. There is no “standard” definition for these terms
— you must refer to the devices data sheet.

Software can also “force” an interrupt by executing an SVC (service call), or
sometimes by writing the same data that hardware would otherwise have

produced.

Exceptions and Interrupts

ARM presents exceptions and interrupts in a unified way (and they are similar),
and generally refers to both as exceptions.

An exception 1s generated 1n one of the following ways:

— Darectly as a result of the execution or attempted execution of the instruction stream. For example, an
exception 1s generated as a result of an undefined mstruction.

— Indirectly, as a result of something in the state of the system. For example, an exception 1s generated
as a result of an interrupt signaled by a peripheral.

ARM DDI 0406C.c “ARM Architecture Reference Manual ARM v7-A/R” page B1-1137

Exception Handling

An exception causes the processor to suspend program execution to handle an
event.

When an exception is taken, the processor state is preserved immediately so
that execution can be resumed from the point where the exception was taken.

More than one exception might be generated at the same time, and a new
exception can be generated while the processor is handling an exception.

When an exception is taken, processor execution is forced to an address that
corresponds to the type of exception. This address is called the exception vector
for that exception.

Exceptions Handling

The ARM processor has eight exception vectors stored in eight consecutive
memory locations starting at an exception base address. These form a vector
table.

Exception Vectors, vector address, and modes

Offset Vector Mode
0x00 Reset Supervisor
0x04 Undefined Instruction Undefined
0x08 Supervisor Call Supervisor
0x0C Prefetch Abort Abort
0x10 Data Abort Abort
0x14 Not Used NA

0x18 IRQ Interrupt IRQ

Ox1C FIQ Interrupt FIQ

When an Exception is taken...

The processor leaves user mode and enters a privileged mode

The LR and CPSR are saved in local shadow registers

Application View User System |Hypervisor|Supervisor| Abort |Undefined| Monitor IRQ FIQ
RO RO _usr
R1 R1 usr
R2 R2_usr
R3 R3_usr
R4 R4 usr
R5 R5_usr
R6 R6_usr
R7 R7 _usr
R8 R8 usr R8 fiq
R9 R9 usr R9 fiq
R10 R10 usr R10 fiq
R11 R11 usr R11 fiq
R12 R12_usr R12 fiq
SP SP_usr SP_hyp SP_svc SP_abt SP_und SP_mon SP_irq SP_fiq
LR LR usr LR_svc LR _abt LR_und LR_mon LR_irq LR_fiq
PC PC_usr
APSR CPSR SPSR_hyp | SPSR_svc | SPSR_abt | SPSR_und | SPSR_mon | SPSR _irq | SPSR_fiq

When an Exception is taken...

The CPSR is updated with new context information

CPSR

Mode
Mask bits
Instruction set
Endianess

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2

1

0

N

Z

C

\%

Q

I'T

J

RSRV

GE

I'T

E

A

F

T

M

When an Exception is taken, a privileged mode is entered

CPSR

Table B1-1 ARM processor modes

Processor mode Encoding Privilege level Implemented Security state
User usr 10000 PLO Always Both

FIQ fiq 10001 PL1 Always Both

IRQ irq 10010 PLI1 Always Both

Supervisor svc 10011 PL1 Always Both

Monitor mon 10110 PL1 With Security Extensions Secure only
Abort abt 10111 PL1 Always Both

Hyp hyp 11010 PL2 With Virtualization Extensions Non-secure only
Undetined und 11011 PLI1 Always Both

System Sys 11111 PL1 Always Both

Mode changes can be made under software control, or can be caused by an external or internal exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2

1

0

N|z|c|Vv|Q

IT

J

RSRV

GE

I'T

E[A[T|F|T

M

Privileged modes

User mode is for applications. It is the only unprivileged mode, and has restricted access to system
resources. Typically, a processor spends more than 99% of its time in user mode.

Supervisor mode has unrestricted access to all resources. Entered on reset or power-up, or when
software executes a Supervisor Call instruction (SVC). Typically used by OS’s managing kernel or
other protected files.

System mode is entered from another non-user mode by writing the CPSR. Same GPRs as user
mode, but can access protected resources (recently added to aid in dealing with nested IRQS)

Abort mode is entered if a program attempts to access a non-existing memory location or execute
an undefined instruction.

IRQ mode is entered in response to a normal interrupt request from an external device.

FIQ mode is entered in response to a fast interrupt request from an external device and offers faster
service for more urgent requests. Dates from 8MHz/floppy disk days. FIQ automatically masks IRQ.

Every processor mode except user mode can change to a new mode by writing the CPSR

When an Exception is taken...
The appropriate exception vector is loaded

Address
Asserting IRQ input causes ARM to change modes (to IRQ mode) Offset x
and load PC with “IRQ vector” address. A branch instruction at that 00 I'Not Used]
address will branch to IRQHandler 04 | B Undefined
...08 | B SVCHandler
...0C | B PFAbortHandler Vector
Table
GIC ARM ...10 | B DAbortHandler
v v ...14 | Not Used

§ EPGA E PL ...18 | B IRQHandler

5 » Interrupts ...1C | B FIQHandler

2 . > |RQ —

o . > Timer PC .18

o Timers > » FIQ

> > Interrupts

£ | Memory 3l Memory <> AXI Bus

_E Controller > |nterrupts

§ SPI, 12C, : On-b(;ardl IRQHandler | stmdb sp! {r0-r3,

S CAN, Etc. E :Detrlp er: push {r1}

nterrupes LDR r2, =gpio_Int
ZYNQ Main

Memory

When an Exception is taken...
00100000 <_vector_table>:

, 100000: ea000049 b 10012c¢ <_boot>
The code shown is auto-generated 100004: ea000025 b 100030 <Undefined>

by SDK and taken from an .elf file. 100008: ea00002b b 1000bc <SVCHandler>
10000c: ea00003b b 100100 <PrefetchAbortHandler>

100010: ea000032 b 1000e0 <DataAbortHandler>

Note the vector table and the 100014: e320f000 nop {0}

B 100020 instruction. The auto- 100018: ea000000 b 100020 <IRQHandler>
generated IRQHandIer can be 10001c: ea00000f b 100060 <FIQHandler>
modified to call your IRQ handler 00100020 <IRQHandler>:

function. 100020: €92d500f push {r0, r1, r2, r3, ip, Ir}

100024: ed2d0b10 vpush {d0-d7}
_ . 100028: ed6d0b20 vpush {d16-d31}
SDK provides a simple way to

branch to your IRQ handler

When an Exception is taken...
00100000 <_vector_table>:

100000: ea000049 b 10012c <_boot>

You must include 100004: ea000025 b 1000a0 <Undefined>
, , . 100008: ea00002b b 1000bc <SVCHandler>
include xil_exception.h 10000c: ea00003b b 100100 <PrefetchAbortHandler>

100010: ea000032 b 1000e0 <DataAbortHandler>
100014: e320f000 nop {0}

100018: ea000000 b 100020 <IRQHandler>
10001c: ea00000f b 100060 <FIQHandler>

In your source file.

Then you can use the function:

“Xil_ExceptionRegisterHandler” 00100020 <IRQHandler>:

] 100024: ed2d0b10 vpush {d0-d7}
the name of your C function, and 100028: ed6d0b20 vpush {d16-d31}
NULL.

Xil_ExceptionRegisterHandler(5, My_IRQ_Handler, NULL);

When an Exception is taken...
00100000 <_vector_table>:

100000: ea000049 b 10012c <_boot>

Note address 100024 — Only 100004: ea000025 b 100020 <Undefined>
, . 100008: ea00002b b 1000bc <SVCHandler>
some registers are pushed. 10000c: €a00003b b 100100 <PrefetchAbortHandler>

100010: ea000032 b 1000e0 <DataAbortHandler>
Why? 100014: e320f000 nop {0}
y: 100018: ea000000 b 100020 <IRQHandler>
10001c: ea00000f b 100060 <FIQHandler>

00100020 <IRQHandler>:
100020: €92d500f push {r0, r1, r2, r3, ip, Ir}
100024: ed2d0b10 vpush {d0-d7}
100028: ed6d0b20 vpush {d16-d31}

Callee-saved Registers

Xilinx ARM GCC compiler defines R4-R11 as
callee-save registers — it is up to user code
to save and restore them.

For example, in XUartPs_ResetHw code
(user code), R4-R6 are used in the
function, so they are saved and restored.

Reference:

1. IHI@O42F ARM Procedure Call Standard for the ARM Architecture (AAPCS)
Section 5.1

2. Wikipedia: Calling Convention - ARM(A32)

xuartps hw.c: Disassembly

90101568 <XUartPs ResetHw>:
push {r4, r5, r6, 1r}

movw ril, #16383

mov r3, #0

mov r2, #32

mov ré, #40

mov r5, #3

movw rd, #651

mov 1lr, #15

mov ip, #296

~rl, [re, #12]

" re, [ro]

" r5, [re]

str r1, [re, #20]

~ r3, [ro, #4]

~ r2, [re, #32]

~ r2, [re, #68]

str r3, [r@, #28]

- r4, [ro, #24]

~ 1r, [re, #52]

str ip, [re]

pop {r4, r5, ré, pc}

str
str
str
ctr
str
str
str
str
str
str
st

Programming Model for Using Interrupts

Initialization
* Vector table setup (done automatically by SDK, but can be changed)

e Configure GIC (default done automatically, but app must customize)
e Establish priorities for selected interrupts; select sensitivity; enable source and CPU

* Configure source to produce interrupts (User app must do)
* Select sensitivity; select polarity; enable source

Interrupt Handling: Write IRQ handler
* Save CPU States
e Get Interrupt ID from GIC
 Service valid interrupts
* Inform GIC that the interrupt has been serviced
* Restore CPU States

Initialize GIC

The GIC (Generic Interrupt Controller) is the centralized resource for managing
Interrupts sent to Cortex-A9 processor.

The GIC is a separate IP block from the ARM, and it is memory-mapped like any
other IP block.

It has more than 100 inputs (interrupt signals), and two outputs (what are they)?
Every GIC input gets a unique ID and configurations for:

* enabling the particular input to generate an interrupt into a given CPU (in
our case, there is only one CPU, but this still must be done);

 Setting the priority (0 is highest, 255 is lowest, but ZYNQ only supports 32
levels, so bits [2:0] are ignored);

 Setting the sensitivity (level or edge).

GIC Registers

| Name | # |Bits| BaseAddr | Functon
5

ICCICR 1 OxOF8FO0 0100 CPU interface control

[(oex\:80 1 8 OxOF8F0 0104 CPU priority mask defines minimum priority interrupts must need to be taken

(eplple;88 1 2 OxOF8FO 1000 Distributor global enable

[epI3: 8 3 32 OxOF8F0 1100 Enable interrupt sources to be forwarded to CPU (1 bit per interrupt)

[ep]lel3: 88 3 32 OxOF8F0 1180 Turn on or off interrupt sources (1 bit per interrupt)

[o]I888 24 32 OxOF8F0 1400 Priority fields (8 bits per interrupt). Must be > ICCPMR for interrupt to be taken

(ep]lafi8s 24 8 OxOF8F0 1800 Processor targets (2 bits per interrupt). Must set to “01”

[ep][e/2: 88 6 32 OxOF8F0 1CO0 Sensitivity (2-bits per interrupt). “01” for level sensitivity; “11” for edge

N
N

Enabling Interrupts

To enable interrupts, the | or F bit in the CSPR must be set (for IRQ or FIQ). The
CPSR cannot be accessed from user mode, except by two special instructions.
The “Move Special to Register” (MSR) instruction can move the CPSR to a GPR,
and the “Move Register to Special” (MRS) can move from GPR to CPSR. These
special instructions have no “C” correlate, so they must be “passed through”
using a special C syntax:

void disable_ ARM_A9 interrupts(){

uint32_t mode = OxDF; // System mode [4:0] and IRQ disabled [7]

uint32_t read_cpsr=0; // used to read previous CPSR value

uint32_t bit__ mask = OxFF; // used to clear bottom 8 bits

__asm____ volatile_ ("mrs %0, cpsr\n" : "=r" (read_cpsr));

__asm____ volatile_ ("msr cpsr,%0\n" : : "r" ((read_cpsr & (~bit_mask))| mode));
return; }

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

CPSR [N|z|c|Vv|Q| IT |J| RSRV GE T E|A[I|F|T M

Enabling Interrupts

The GIC can be configured following the 9-step procedure in the Project 4
description.

After the GIC is configured, the interrupt source must be configured as well.
Typically, every peripheral that can generate interrupts will have one to several
registers that must be properly configured to enable interrupts.

Once the hardware is configured to produce interrupts, software can be written
to handle them.

Interrupt Handler

Interrupt handlers run at unscheduled times, and disrupt unknown programs.
They must be sure to save and restore all context.

When writing in assembly, all context should be stored on the stack. When
writing in C, the compiler will do that for you. The LR and CPSR are automatically
saved in local registers (and restored on exit) during mode changes.

Since the ARM has only one interrupt signal (or two if you count FIQ), the
handler must determine the interrupt ID#, and then branch appropriatly.

The IRQ handler for each ID# can perform it’s task and then return.

Interrupt Handler

In general, you should spend as little time as possible in the handler.

You must decide if you want to allow other (or higher priority) interrupts to
interrupt your handler, and enable or disable interrupts as appropriate.

You must choose priority levels for all interrupts.

Interrupts: General Concepts

Latency

Priority (NMI)
(Note if two interrupts share the same priority, the lowest ID# wins).

Shadow registers (in general)

Interrupt inputs signals (in general)

Interrupts:
ZYNQ ID#’s

33,32 o PL [2:0] 63:61
L2 Cache 34 PL[7:3] 68:64

OCM 35 Timer TTC1 71:69

DMAC DMAC[7:4] 75:72

XADC 37,38 USB 1 76

DevC 40 Ethernet 1 77

SWDT 41 SDIO 1 79

TTCO 44:42 12C 1 80
DMAC[3:0], Abort 49:46 SPI 1 81

SMC 50 UART 1 82

Quad SPI 51 CAN 1 83

GPIO 52 PL[15:8] 91:84

USB 0 53 scu Parity 92

Ethernet O 54, 55

SDIO 0 56

12C0 57

SPI 0 58

UART 0 59

CANO 60

