
ZYNQ/ARM
Interrupt Controller

Events, Exceptions (faults), and Interrupts

Events are expected or unexpected signals that indicate a new situation may
need immediate attention. Events include:

Fault conditions, like a processor trying to read or write non-existent
memory, or trying to execute an illegal or unimplemented instruction.

Hardware-generated interrupt service requests that result from a peripheral
needing urgent attention due to data needing to be transferred, or a fault
condition needing to be addressed.

Software-generated interrupt service requests that result from user code
requesting access to a protected resource.

Events, Exceptions (faults), and Interrupts

Some events do not require immediate attention. These events may set a
status bit, or record some data, and remain “pending” (or awaiting service)
until the processor gets around to checking on and servicing them.

Some events do require immediate attention, and these generate exceptions
or interrupts.

“Exceptions” generally refer to unexpected events that are generated as
a result of program execution, or from hardware faults (like power-fail).

“Interrupts” generally refer to signals asserted by peripherals that need
urgent attention, or by user programs that need access to protected
resources.

Interrupts generally arise from peripheral circuits that have produced new
data that needs to be consumed in a timely fashion (i.e., before another new
data point comes along), or that need new data to continue operations.

Consider a keyboard key press. If a new keypress arrives every 250ms, the
ARM processor running at 600MHz can do roughly 150 million instructions
between key presses.

Interrupts

Consider a sensor measuring motion, or light intensity, or temperature, or...
Most sensors use a relatively low data rate, and so don’t need constant
attention. Data typically gets to the CPU via a serial bus.

Bus controllers also commonly generate interrupts (why)?

SPI is a point-to-point serial bus that can run up to about 50MHz, for a peak
data rate of around 5Mbytes/second. Most run slower, and most “burst” to
get a few bytes, and then are dormant for some time.

I2C has one master and up to 1000 “slaves”, and can run up to 5MHz (most
run < 100KHz). That’s a data rate of 500Kbytes to 10Kbytes per second.

UART can run up to 200KHz, or 20KBytes/second.

Common uses include sensors, actuators, ADCs, DACs in embedded systems

Common uses include low-rate sensors, motor controllers, channel setup

These busses are discussed in an upcoming presentation...

With ZYNQ, GPIO’s from
the MIO pins or from
the FPGA can generate
interrupts.

All on-board peripherals
can generate interrupts

FPGA-based IP blocks
can also generate
interrupts.

FPGA

M
IO

GPIO

IRQ
GIC

ARM CPU

0

17
18

50

51

1
2

53
52

16

Fault conditions can also cause interrupts.

Software can also “force” an interrupt by executing an SVC (service call), or
sometimes by writing the same data that hardware would otherwise have
produced.

Faults are unexpected events that occur during instruction execution. For
example, a program could attempt to read or write a non-existent memory
location, or attempt to execute and unimplemented instruction.

In either case, processing cannot continue, and a context switch is required.

In many contexts, faults that occur during instruction stream execution are
called exceptions or traps. There is no “standard” definition for these terms
– you must refer to the devices data sheet.

Exceptions and Interrupts

ARM presents exceptions and interrupts in a unified way (and they are similar),
and generally refers to both as exceptions.

ARM DDI 0406C.c “ARM Architecture Reference Manual ARM v7-A/R” page B1-1137

Exception Handling

An exception causes the processor to suspend program execution to handle an
event.

When an exception is taken, the processor state is preserved immediately so
that execution can be resumed from the point where the exception was taken.

More than one exception might be generated at the same time, and a new
exception can be generated while the processor is handling an exception.

When an exception is taken, processor execution is forced to an address that
corresponds to the type of exception. This address is called the exception vector
for that exception.

Exceptions Handling

The ARM processor has eight exception vectors stored in eight consecutive
memory locations starting at an exception base address. These form a vector
table.

Offset Vector

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

Reset

Undefined Instruction

Supervisor Call

Prefetch Abort

Data Abort

Not Used

IRQ Interrupt

FIQ Interrupt

Mode

Supervisor

Undefined

Supervisor

Abort

Abort

NA

IRQ

FIQ

Exception Vectors, vector address, and modes

When an Exception is taken…

The processor leaves user mode and enters a privileged mode

R0_usr

R1_usr

R2_usr

R3_usr

R4_usr

R5_usr

R6_usr

R7_usr

R8_usr

R9_usr

R10_usr

R11_usr

R12_usr

SP_usr

LR_usr

PC_usr

User System Supervisor Abort Undefined IRQ FIQ

CPSR

SP_svc

LR_svc

SPSR_svc

SP_fiq

LR_fiq

SPSR_fiq

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

SP_abt

LR_abt

SPSR_abt

SP_und

LR_und

SPSR_und

SP_irq

LR_irq

SPSR_irq

Monitor

SP_mon

LR_mon

SPSR_mon

Hypervisor

SP_hyp

SPSR_hyp

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

SP

LR

PC

Application View

APSR

The LR and CPSR are saved in local shadow registers

When an Exception is taken…

The CPSR is updated with new context information

• Mode
• Mask bits
• Instruction set
• Endianess

N Z C V Q

31 30 29 28 27

IT

26 25

J

24 23 22 21 20

RSRV

19 18 17

GE

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

IT E A I F T M

0

CPSR

When an Exception is taken, a privileged mode is entered

N Z C V Q

31 30 29 28 27

IT

26 25

J

24 23 22 21 20

RSRV

19 18 17

GE

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

IT E A I F T M

0

CPSR

Privileged modes

User mode is for applications. It is the only unprivileged mode, and has restricted access to system

resources. Typically, a processor spends more than 99% of its time in user mode.

Supervisor mode has unrestricted access to all resources. Entered on reset or power-up, or when

software executes a Supervisor Call instruction (SVC). Typically used by OS’s managing kernel or

other protected files.

System mode is entered from another non-user mode by writing the CPSR. Same GPRs as user

mode, but can access protected resources (recently added to aid in dealing with nested IRQs)

Abort mode is entered if a program attempts to access a non-existing memory location or execute

an undefined instruction.

IRQ mode is entered in response to a normal interrupt request from an external device.

FIQ mode is entered in response to a fast interrupt request from an external device and offers faster

service for more urgent requests. Dates from 8MHz/floppy disk days. FIQ automatically masks IRQ.

Every processor mode except user mode can change to a new mode by writing the CPSR

The appropriate exception vector is loaded

Not Used

B Undefined

B SVCHandler

B PFAbortHandler

B IRQHandler

Not Used

B DAbortHandler

...00

...04

...08

...0C

...10

...14

...18

B FIQHandler...1C

Main

Memory

Address

Offset

Vector

Table
GIC ARM

PL
Interrupts

Timer
Interrupts

Memory
Interrupts

On-board
Peripheral
Interrupts

IRQ

FIQ

ZYNQ

Timers

FPGA

Memory
Controller

SPI, I2C,
CAN, Etc.

O
n

-b
o

ar
d

 In
te

rr
u

p
t

So
u

rc
es

AXI Bus

IRQHandler stmdb sp! {r0-r3,

push {r1}

LDR r2, =gpio_Int

...18PC

Asserting IRQ input causes ARM to change modes (to IRQ mode)
and load PC with IRQ vector address. A branch instruction at that
address will branch to IRQHandler

When an Exception is taken…

The code shown is auto-generated
by SDK and taken from an .elf file.

When an Exception is taken…
00100000 <_vector_table>:

100000: ea000049 b 10012c <_boot>
100004: ea000025 b 1000a0 <Undefined>
100008: ea00002b b 1000bc <SVCHandler>
10000c: ea00003b b 100100 <PrefetchAbortHandler>
100010: ea000032 b 1000e0 <DataAbortHandler>
100014: e320f000 nop {0}
100018: ea000000 b 100020 <IRQHandler>
10001c: ea00000f b 100060 <FIQHandler>

00100020 <IRQHandler>:
100020: e92d500f push {r0, r1, r2, r3, ip, lr}
100024: ed2d0b10 vpush {d0-d7}
100028: ed6d0b20 vpush {d16-d31}

.

.

.

SDK provides a simple way to
branch to your IRQ handler

Note the vector table and the
B 100020 instruction. The auto-
generated IRQHandler can be
modified to call your IRQ handler
function.

You must include

include xil_exception.h

In your source file.

When an Exception is taken…
00100000 <_vector_table>:

100000: ea000049 b 10012c <_boot>
100004: ea000025 b 1000a0 <Undefined>
100008: ea00002b b 1000bc <SVCHandler>
10000c: ea00003b b 100100 <PrefetchAbortHandler>
100010: ea000032 b 1000e0 <DataAbortHandler>
100014: e320f000 nop {0}
100018: ea000000 b 100020 <IRQHandler>
10001c: ea00000f b 100060 <FIQHandler>

00100020 <IRQHandler>:
100020: e92d500f push {r0, r1, r2, r3, ip, lr}
100024: ed2d0b10 vpush {d0-d7}
100028: ed6d0b20 vpush {d16-d31}

.

.

.

Then you can use the function:
“Xil_ExceptionRegisterHandler”
with parameters ‘5’ (for IRQ vector),
the name of your C function, and
NULL.

Xil_ExceptionRegisterHandler(5, My_IRQ_Handler, NULL);

Note address 100024 – only
some registers are pushed.

When an Exception is taken…
00100000 <_vector_table>:

100000: ea000049 b 10012c <_boot>
100004: ea000025 b 1000a0 <Undefined>
100008: ea00002b b 1000bc <SVCHandler>
10000c: ea00003b b 100100 <PrefetchAbortHandler>
100010: ea000032 b 1000e0 <DataAbortHandler>
100014: e320f000 nop {0}
100018: ea000000 b 100020 <IRQHandler>
10001c: ea00000f b 100060 <FIQHandler>

00100020 <IRQHandler>:
100020: e92d500f push {r0, r1, r2, r3, ip, lr}
100024: ed2d0b10 vpush {d0-d7}
100028: ed6d0b20 vpush {d16-d31}

.

.

.

Why?

Callee-saved Registers

Xilinx ARM GCC compiler defines R4-R11 as
callee-save registers – it is up to user code
to save and restore them.

For example, in XUartPs_ResetHw code
(user code), R4-R6 are used in the
function, so they are saved and restored.

19

Reference:
1. IHI0042F ARM Procedure Call Standard for the ARM Architecture (AAPCS)

Section 5.1
2. Wikipedia: Calling Convention – ARM(A32)

xuartps_hw.c: Disassembly

Programming Model for Using Interrupts

Initialization
• Vector table setup (done automatically by SDK, but can be changed)

• Configure GIC (default done automatically, but app must customize)
• Establish priorities for selected interrupts; select sensitivity; enable source and CPU

• Configure source to produce interrupts (User app must do)
• Select sensitivity; select polarity; enable source

20

Interrupt Handling: Write IRQ handler
• Save CPU States

• Get Interrupt ID from GIC

• Service valid interrupts

• Inform GIC that the interrupt has been serviced

• Restore CPU States

Initialize GIC

The GIC (Generic Interrupt Controller) is the centralized resource for managing
interrupts sent to Cortex-A9 processor.

The GIC is a separate IP block from the ARM, and it is memory-mapped like any
other IP block.

It has more than 100 inputs (interrupt signals), and two outputs (what are they)?

Every GIC input gets a unique ID and configurations for:

• enabling the particular input to generate an interrupt into a given CPU (in
our case, there is only one CPU, but this still must be done);

• Setting the priority (0 is highest, 255 is lowest, but ZYNQ only supports 32
levels, so bits [2:0] are ignored);

• Setting the sensitivity (level or edge).

21

GIC Registers

22

Name # Bits Base Addr Function

ICCICR 1 5 0x0F8F0 0100 CPU interface control

ICCPMR 1 8 0x0F8F0 0104 CPU priority mask defines minimum priority interrupts must need to be taken

ICDDCR 1 2 0x0F8F0 1000 Distributor global enable

ICDISER 3 32 0x0F8F0 1100 Enable interrupt sources to be forwarded to CPU (1 bit per interrupt)

ICDICER 3 32 0x0F8F0 1180 Turn on or off interrupt sources (1 bit per interrupt)

ICDIPR 24 32 0x0F8F0 1400 Priority fields (8 bits per interrupt). Must be > ICCPMR for interrupt to be taken

ICDIPTR 24 8 0x0F8F0 1800 Processor targets (2 bits per interrupt). Must set to “01”

ICDICFR 6 32 0x0F8F0 1C00 Sensitivity (2-bits per interrupt). “01” for level sensitivity; “11” for edge

Enabling Interrupts

23

To enable interrupts, the I or F bit in the CSPR must be set (for IRQ or FIQ). The
CPSR cannot be accessed from user mode, except by two special instructions.
The “Move Special to Register” (MSR) instruction can move the CPSR to a GPR,
and the “Move Register to Special” (MRS) can move from GPR to CPSR. These
special instructions have no “C” correlate, so they must be “passed through”
using a special C syntax:

N Z C V Q

31 30 29 28 27

IT

26 25

J

24 23 22 21 20

RSRV

19 18 17

GE

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

IT E A I F T M

0

CPSR

void disable_ARM_A9_interrupts(){

uint32_t mode = 0xDF; // System mode [4:0] and IRQ disabled [7]

uint32_t read_cpsr=0; // used to read previous CPSR value

uint32_t bit_mask = 0xFF; // used to clear bottom 8 bits

__asm__ __volatile__("mrs %0, cpsr\n" : "=r" (read_cpsr));

__asm__ __volatile__("msr cpsr,%0\n" : : "r" ((read_cpsr & (~bit_mask))| mode));

return; }

Enabling Interrupts

24

The GIC can be configured following the 9-step procedure in the Project 4
description.

After the GIC is configured, the interrupt source must be configured as well.
Typically, every peripheral that can generate interrupts will have one to several
registers that must be properly configured to enable interrupts.

Once the hardware is configured to produce interrupts, software can be written
to handle them.

Interrupt Handler

25

Interrupt handlers run at unscheduled times, and disrupt unknown programs.
They must be sure to save and restore all context.

When writing in assembly, all context should be stored on the stack. When
writing in C, the compiler will do that for you. The LR and CPSR are automatically
saved in local registers (and restored on exit) during mode changes.

Since the ARM has only one interrupt signal (or two if you count FIQ), the
handler must determine the interrupt ID#, and then branch appropriatly.

The IRQ handler for each ID# can perform it’s task and then return.

Interrupt Handler

26

In general, you should spend as little time as possible in the handler.

You must decide if you want to allow other (or higher priority) interrupts to
interrupt your handler, and enable or disable interrupts as appropriate.

You must choose priority levels for all interrupts.

Interrupts: General Concepts

27

Latency

Priority (NMI)

(Note if two interrupts share the same priority, the lowest ID# wins).

Shadow registers (in general)

Interrupt inputs signals (in general)

Interrupts:
ZYNQ ID#’s

28

Source Name ID# Source Name ID#

APU

CPU 33,32
PL

PL [2:0] 63:61

L2 Cache 34 PL [7:3] 68:64

OCM 35 Timer TTC1 71:69

PMU PMU [1:0] DMAC DMAC[7:4] 75:72

XADC XADC 37, 38

IOP

USB 1 76

DevC DevC 40 Ethernet 1 77

SWDT SWDT 41 SDIO 1 79

Timer TTC0 44:42 I2C 1 80

DMAC DMAC[3:0], Abort 49:46 SPI 1 81

Memory
SMC 50 UART 1 82

Quad SPI 51 CAN 1 83

IOP

GPIO 52 PL PL[15:8] 91:84
USB 0 53 SCU Parity 92

Ethernet 0 54, 55

SDIO 0 56

I2C 0 57

SPI 0 58

UART 0 59

CAN 0 60

