
www.realdigital.org

A Brief Introduction to
Verilog

Hardware Definition Language (HDL)

Forward
Verilog is a “Hardware Description” language (HDL) that is used to define the structure
and/or behavior of digital circuits. Verilog is a “concurrent” language, different than a
“procedural” language like C or Java.

Verilog is the most widely used HDL industry today, but VHDL is catching up. Although
the two languages are different, they are quite similar in many ways. If you learn
Verilog, it will only take a few hours to convert to VHDL.

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

A

B
C

Y

A B C Y Drive an output
signal Y to a ‘1’
whenever input B is
not asserted at the
same time C is, or
when A is asserted
when C is not.

I$001: INV(B,N$001)
I$002: AND2(N$001,C,N$002)
I$003: INV(C,N$003)
I$004: AND2(A,N$003,N$004)
I$005: OR2(N$002,N$004,Y)

Behavioral descriptions define input-to-
output relationships, but provide no
information about how to construct a circuit

Structural descriptions show how lower-level
components (like logic gates) are interconnected,
but the input/output behavior must be deduced.

Concepts: Behavioral vs. Structural Models
“Behavioral” code defines outputs as functions of inputs, without describing any
circuit components or modules that might be used in constructing the circuit.

“Structural” code is a form of netlist, defining a circuit as a collection of subordinate
components or modules and their interconnecting wires.

Concepts: Behavioral vs. Structural Models

Behavioral descriptions are more abstract, higher-level, quicker and easier to write,
easier for others to understand and follow, and largely self documenting.

Structural descriptions are often used when existing IP blocks can be reused. They
are easier to debug, easier to analyze (for timing and area), and can be easier to
optimize.

Most designers write behavioral code for individual, lower-level circuits, and
structural code when reusing existing IP or connecting lower-level blocks into
more complex circuits.

This example compares a structural 4-bit comparator schematic a Verilog behavioral
description. The Verilog description is far easier and faster to create, its function is clear to
the reader, and it is portable between CAD tools.

Example: Behavioral vs. Structural Models

Structural Circuit (schematic)
Verilog Wire Assignments

GT <= (A > B) ? 1’b1 : 1’b0;
LT <= (A < B) ? 1’b1 : 1’b0’;
EQ <= (A == B) ? 1’b1 : 1’b0;

module full_adder(x,y,cin,s,cout);
input x,y,cin;
output s,cout;
wire s1,c1,c2,c3;
xor(s1,x,y);
xor(s,cin,s1);
and(c1,x,y);
and(c2,y,cin);
and(c3,x,cin);
or(cout,c1,c2,c3);

endmodule

module adder_4bit(x,y,cin,sum,cout);
input [3:0] x,y;
input cin;
output[3:0] sum;
output cout;
wire c1,c2,c3;
full_adder fa1(.x(x[0]),.y(y[0]),.cin(cin),.s(sum[0]),.cout(c1));
full_adder fa2(.x(x[1]),.y(y[1]),.cin(c1),.s(sum[1]),.cout(c2));
full_adder fa3(.x(x[2]),.Y(y[2]),.cin(c2),.s(sum[2]),.cout(c3));
full_adder fa4(.x(x[3]),.y(y[3]),.cin(c3),.s(sum[3]),.cout(cout));

endmodule

module adder_4bit(x,y,sum);
input [3:0] x,y;
output[3:0] sum;
sum = x + y;

endmodule

Behavioral Adder
Simpler and easier to read.

Verilog Structural Adder
More work, more detail.

A good thing?

Example: Behavioral vs. Structural Models
This example compares structural vs. behavioral Verilog for a 4-bit adder. Same advantages!

Verilog descriptions can be simulated to check for logical correctness, and synthesized
to automatically create a physical circuit definition.

Simulators were part of the original
Verilog release; synthesizers came
later.

Simulators are arguably the most
important computer tools ever
created. Validating circuits and signal
timings prior to implementation
allows far more complex designs to
proceed more quickly and with fewer
errors.

SimulatorSimulatorSimulator Synthesizer

HDL Source
(Verilog or VHDL)

Test Bench Constraints

Output: Vector
files – inspect for

correctness

Output: Config
files – implement

& validate

.sdf file – can
simulate with

calculated delays

Concept: HDLs can be Simulated and/or Synthesized

Synthesizers create physical circuit
descriptions from HDLs. Some
descriptions can program an FPGA;
others can build custom chips.

Background
• Schematic entry/capture were primary CAD tools until the mid 90’s, but were

completely replaced by VHDL and Verilog by the year 2000

 Higher-level, behavioral design methods – more complex designs more quickly
 Simulation/verification prior to implementation
 Synthesis to create physical circuits for a wide range of target technologies
 Accurate post-synthesis simulation allows detailed timing analysis
 Text-based tools allow platform independent source files (any editor can be used)

• HDLs specify physical circuit behavior, not procedural algorithms

• HDLs can define high-level behavioral or low-level structural models

• HDLs allow designers to easily incorporate IP from a wide range of developers

• Dozens of CAD tools/vendors, many free: Cadence, Mentor, Xilinx, Aldec, etc.

VHDL
• Commissioned/sponsored by US

government starting in 1979

• Widespread use by 1987; Specified by
IEEE 1076 in 1987

• ADA like

• Strong types, more structure, many
features, can be complex

Verilog
• Private company (Gateway Design

Automation) starting in 1983

• Widespread use by 1990; Specified by
IEEE 1364 in 1995

• C like

• More targeted, less complex

VHDL vs. Verilog

Many free VHDL and Verilog tools are available, and lots of reference and example
designs in both languages can be found around the internet

Design Projects
Verilog tools organize the workspace using “Projects”. Projects contain all the source
files needed for a given design. External files can also be used by placing them in a
library, and making the library visible within a project.

Source files include Verilog modules, constraint files used by the synthesizer to guide
implementation, and .sdf files that store signal node timing data.

Verilog source files use modules. Modules are basic Verilog constructs that define
circuits. A simple design might use a single module; more complex designs might use
several. A project can include any number of modules.

Any Verilog module can be used as a component in any other Verilog source file.

Verilog modules stored in external libraries can be used in other projects.

Verilog code can be written to model and study circuits; to specify circuits and
document behavioral requirements; to use/reuse specific pre-existing IP blocks; and to
define circuits for synthesis.

Models for Synthesis

Verilog code written to define circuits for synthesis must model physical wires. Wires
transport signals between Verilog modules, or between modules and the “outside
world”. (Note: the outside world is typically a signal connection to a physical pin on an
IC package).

Verilog “wires” use a 4-valued type to model signals: 0, 1, X, Z

Verilog uses “modules” to define circuits and their behaviors.

Verilog uses the data type “wire” to model physical wires; only wires can transport
data.

Verilog Modules: A first look
Modules are the principle design entity in Verilog. All
circuits are defined in modules. A simple design might
use a single module; more complex designs might use
several. A project can include any number of modules.

The keyword “module” is followed by the module name
and the port list. The port specifies all port signals as
inputs, outputs, or inout (bi-directional).

Local signals are declared immediately following the
module/port statement using the keyword “wire”.

Combinational assignments are made using the assign
statement. Sequential assignments are made inside an
“always” block. A module can have any number of
assign statements and always blocks. Assignment
statements are described in the following slides.

Modules can be instantiated/used in other modules by
including the module name and port connection list.

module simple(
input A, B;
output X, Y;

);

wire Z = 1b’1;

assign X = A & Z;
assign Y = A & B;

end module

module next(
input C;
output K;

);

wire D = 1b’1;
wire F,G;

simple(.A(C),.B(D),.F(X),.G(Y))
assign K = F & G;
end module

Verilog Modules

The module declaration statement
defines the “bounding box”, and the
module body statements define the
circuit functions

module simple(
input A, B;
output X, Y;

);

wire Z = 1b’1;

assign X = A & Z;
assign Y = A & B;

end module

module next(
input C;
output K;

);

wire D = 1b’1;
wire F,G;

simple(.A(C),.B(D),.F(X),.G(Y))
assign K = F & G;
end module

XA
Z

YB

Simple

XA

Z

YB

Simple

C
K

D

F

G

NextAny module can be
“instantiated” as a
component in another
module by listing it’s name
and port connections.
Here, “named association”
is used.

.component_port(topmodule_port)

Concept: Sequential vs. Concurrent Models

• A sequential processing algorithm defines a set of steps that are taken in a
specific order

• Concurrent processing steps occur whenever new input data is available, with no
implied sequence relationship between separate concurrent processes

• Consider a simulation of a 2-input mux: At what time(s) should gate A1 be
simulated? What about gate O1?

A
B

C

YN1

N2

N3

A1

A2

O1

A

B

C

Y
T1 T2 T3 T4 T5 T6T0

• Computer time vs. Simulation time

Concurrency: Modelling time

HDL simulators are indispensable tools for designing and learning about digital circuits. They allow
every feature, every signal, every critical time to be checked, validated, and studied in detail. You must
become proficient at using the simulator to become a skilled designer.

HDL simulators model time by dividing it into arbitrarily small “simulator time steps”, which are the
smallest amounts of time that are relevant to the circuit (typically 10ps).

In any given simulator time step, the CPU only simulates circuit components whose inputs have
changed. Each simulator time step can take as much CPU time as is needed - during some time steps,
many circuit nodes may change, requiring a lot of CPU time. During other steps, very few nodes may
change, requiring almost no CPU time.

Concurrency: Modelling time

A Verilog source file is shown as a block diagram, with
Block 3 expanded into a schematic and netlist.

All “instances” and “nets” that are not given names in
the source file are assigned auto-generated identifiers.

Only some nets will change in any given time step.
Here, only N$42 and Clk change. Only instances
whose inputs have changed in a given step are
simulated. This is called “event driven simulation”.

B
N$42
N$43
N$44

N$45
N$46

N$53

N$54

N$58

N$60

N$61

N$62
N$64

Block 1

Block 2

Block 3

Block 3 Detail

I$19

I$20

Clk

I$21

I$22

I$23

I$24

I$25

I$19: NAND3(N$43,N$41,N$44,N$53)
I$20: OR3(N$45,N$43,N$46,N$54)
I$21: NAND2(N$53,N$54,N$58)
I$22: OR2(B,N$42,N$60)
I$23: OR2(N$42,N$58,N$61)
I$24: FF(Clk,B,N$62)
I$25: AND3(N$60,N$61,N$62,N$54)

Block 3 NetlistUser Source File

A

B

Clk

Time

B
N$42
N$43
Clk
N$54

0
1
1
0
1

0
1
1
0
1

0
0
1
1
1

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

N$58
N$61

0
0

0
0

0
0

-
-

-
-

-
-

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

 Simulator Time Steps

...

Current time

Concurrency: Modeling time

Verilog assign statements are “concurrent”. Assigned outputs are updated
immediately after an input changes, regardless of where the assignment
statement appears in the source file.

Assigning new values to output nets requires a variable amount of CPU time for each simulator step,
depending on how many different signal assignments must be simulated. “Simulator time” is held
constant until all circuit nodes have been simulated and there are no more changes in that step. Only
then does simulator time advance.

module simple(
input A, B;
output X, Y;

);

wire Z = 1b’1;

assign X = A & Z;
assign Y = A & B;

end module

In the code shown, Y changes immediately after A or B change; X changes
immediately after A or Z change. The assign statements could swap places
in the source file, and there would be no difference in the outputs produced:

Verilog combinational assignments are “continuous”. The left hand side is always driven and new
output values are assigned as soon as the right hand side is evaluated.

assign X = A & Z; assign Y = A & B;
assign Y = A & B; assign X = A & Z;

Verilog Concurrency Model
No combinational net should be assigned more than once, because assignment statements are
concurrent and the results will not be determinant. The assign statement on the left will have the
expected results; the example on the right will not.

assign sum = a + b + c; assign sum = a + b;
assign sum = sum + c;

Memory requires a “procedural assignment” so that a timing signal can be checked. Memory
assignments use the “non-blocking” operator that updates outputs at the end of the simulation step.
Non-blocking procedural assignments can only occur inside an “always” block (described later).

always @(posedge(Clk)) begin Q <= D; end

In Verilog, flip-flop outputs are updated after a “procedure” checks for a clock edge. If an edge has
occurred in the current time step, any required output changes take effect at the end of the time step

Verilog Concurrency Model
Evaluating outputs requires
variable amounts of CPU time,
depending on the number of
instances that must be
simulated. “Simulator time” is
held constant during the
simulator time step, until all
circuit nodes/instances have
been simulated and there are
no more changes. Only then
does simulator time advance.

Step 1 Step 2 Step 3 Step 4
CPU
Time

000001 000002 000003 000004

Non-blocking assignments are used for memory. They
are concurrent, and must be inside of an always block.
There can be any number of them, but they all take
effect at the end of the simulation step.

Simulation Time

assign x = ...
assign y = ...
always @ (A)
 begin
 GRN <= 1'b0
 If..
 else if...
 Red <=...
 end
always @ (B)
begin

assign x = ...
assign y = ...
assign z = ...

assign x = ... assign x = ...
assign y = ...
assign z = ...
always @ (B)
begin
 BLUE <=...

CPU time per simulation step (represented by colored box size) depends on
how much processing is required; it will vary for every step. Simulation Time is
fixed during each Simulation Step, and only increments at the end of the step.

Simulation Step

Combinational
assignments are
concurrent and take
effect immediately

The Verilog Language

Verilog Syntax: Identifiers and Numbers

Identifiers: space-free upper and lower case letters, numbers, _, and
$. Can’t begin with a digit; limited to 1024 characters. Verilog is
case sensitive.

Numbers: <size>’ <base> <value>
size: decimal number that specifies number of bits
base: ‘ character followed by b (binary), d (decimal), h (hex)
value: set of digits

Examples: x = 4’b0101 y = 4’d12 z = 16’hAB12

White Space: Spaces, tabs, and new lines and form feeds can
separate words and are ignored.

Verilog Syntax: Constants and Parameters
Constants: A parameter statement defines local parameters (constants) inside of a
module. Parameters are not visible outside the module. They can be changed without
resynthesizing under certain conditions. Typical uses include defining a bus width, or
specifying a number of modules to synthesize in a variable bus-width design.

Localparam is the same, but constants cannot be changed. Localparam is often used
to define numbers or state identifiers (Localparam is most commonly used).

Global constants (and macros) can be defined using the ‘define keyword. They are
visible outside the module, throughout the project.

Examples: parameter width = 8; //“width” can be used throughout module

localparam s0 = 2’b00; //now FSM states can use
localparam s1 = 2’b01; //s0 – s3 as identifiers
localparam s2 = 2’b10;
localparam s3 = 2’b11;

‘define RED 4’b0101 //RED and BLU are visible outside module
‘define BLU 4’d12

Verilog Syntax: Operators

+ Add ! Negation > Greater than

- Subtract ~ Bit-wise negation < Less than

* Multiply & Bit-wise And >= Greater or equal

/ Divide | Bit-wise Or <= Lesser or equal

% Modulus ^ Bit-wise Xor == Case equality

<< Shift left && Logical And != Case inequality

>> Shift right || Logical Or ? Conditional

[] Bit select { } Concatenation {{ }} Replication

Wires and Assignments
Wires transport signals between modules and I/O pins. Wires can connect to other wires, to ‘0’
or ‘1’ logic values, to modules, or to I/O pins.

“assign” statements assign values to wires, but not to memory devices – that requires an
“always block” (more on that in a later slide). “assign” statements are “continuous assignment”
statements, which means they are always active and take effect immediately. Wires must be
declared prior to use with a wire statement. Examples:

wire a, b, c; //multiple wires can be defined at once
wire d = 1’b0; //declares and assigns wire d to 0
wire [3:0] bus4; //bus definition
assign a = 1’b1; //a is assigned to a 1
assign bus4 = {a, 3’b100} //bus4[3] gets a, bus4[2:0] gets 100
assign b = bus4_A; //b gets assigned bus4[3]
assign a = b //Error! a was already assigned
assign c = b & c | ~d; //wires can be assigned logic

All module input signals (ports) must be wires. Wires declared inside a module are not visible
outside that module.

Registers and Assignments
Verilog supports two variable types (wire and reg) and two assignment types: “wire
assignments” (pervious slide), and “procedural assignments”. Procedural assignments store
outputs in registers (reg) types. Verilog has two procedural assignments: “initial”, run once at
the start of simulation, and “always”, which always runs.

Registers/memory device outputs can only be assigned within an always block. Wires cannot
be assigned in an always block.

Registers store the last value that was assigned to them (wires store nothing). Reg types are
required for instantiating memory. Registers are declared prior to use with a reg statement.
Examples:

reg q1, q2; //multiple OK
reg[3:0] RA, RB; //declare two busses

Registers can connect to module outputs, but not to inputs (only wires can connect to module
inputs).

Possible values for reg and wire variables are 0, 1, X (unknown), and Z (high impedance)

Always Procedural Block
Procedural assignments define sequential
behavior – that is, events that happen only
under certain conditions.

Always blocks are procedural assignment
statements that are always active throughout
the simulation. They execute anytime a signal
in the sensitivity list changes. A sensitivity list is
a list of signals following the “always” keyword.

The sensitivity list may also contain function
calls, like “posedge(clk)”. Posedge(sig) will
return “true”, and cause the always block to
execute, whenever a positive edge is detected
on “sig”.

An always block must be used to infer memory
(e.g., flip-flops and latches).

module dff(
input clk, rst, D;
output Q

);

always @ (posedge(clk), posedge(rst))
begin

if (rst == 1) Q <= 1'b0;
else Q <= D;

end

endmodule

Example: D Flip-flop

Procedural Assignments: Blocking vs. Non-blocking
Always blocks assign values to variables of type “reg”. Wires cannot be assigned new values.

Reg variables are assigned new values with “blocking” or “non-blocking” assignments.
Blocking assignments (=) take effect immediately, but non-blocking assignments (<=) take
effect at the end of the simulation step. Non-blocking assignments are concurrent.

Flip-flops are inferred (created) using an always block that checks for a posedge on clk
(and/or rst). Output values are assigned using a non blocking (<=) assignment.

Always blocks can define combinational logic, sequential logic, or a mixture of both. If only
combinational logic is defined, then use blocking assignments; otherwise, use non-blocking.

Do not make assignments to the same variable from more than one always block.

A module can have as many procedural (always) blocks as necessary. Statements in a
procedural block are executed in order, but the blocks themselves are concurrent to other
blocks.

“Initial” procedural blocks are similar to always blocks, but they execute only once at the very
start of a simulation. Initial blocks are used to setup initial conditions for simulation.

Procedural blocks: If-then and Case statements
If-then and case statements can only appear in procedural
blocks (always blocks). They allow conditions to be checked
prior to taking action, and use C-like syntax.

If and case statements can be used to infer memory, by
incompletely specifying all possible outcomes of a condition
check. If not all possibilities are specifically covered,
synthesis will generate extra latches.

If and case statements can also be used to define purely
combinational logic, but care must be taken to avoid creating
unwanted memory.

If statements can have one “else” block, but any number of
“else if” blocks. If only one assignment is needed, the begin…
end keywords are not required.

End case statements with “default”, or risk latches.

module if_example(
input A, B;
output X;

);

always @ (A)
begin

if (A) X <= 1'b0;
end

endmodule

Procedural blocks: If-then and Case statements

reg[1:0]

always @ (Sel, A, B, C, D)
begin

if (Sel == 2’d0) Y = A;
else if (Sel == 2’d1) Y = B;
else if (Sel == 2’d2) Y = C;
else if (Sel == 2’d3) Y = D;

end

***** Versus ******

always @ (Sel, A, B, C, D)
begin

if (Sel == 2’d0) Y = A;
else if (Sel == 2’d1) Y = B;
else if (Sel == 2’d2) Y = C;
else Y = D;

end

Can you see the difference in the multiplexors?

Will one be purely combinational?

Will one generate latches?

Procedural blocks: If-then and Case statements

Module decoder_3_8(
input[2:0] I,
output[7:0] Y

);

reg [7:0] Y;

always @(I)
begin

case(I)
3’d0: Y = 8’d1;
3’d1: Y = 8’d2;
3’d2: Y = 8’d4;
3’d3: Y = 8’d8;
3’d4: Y = 8’d16;
3’d5: Y = 8’d32;
3’d6: Y = 8’d64;
3’d7: Y = 8’d128;
default: 8’d0;

endcase
end;

Case statement example

Modules
Modules are the principle design entity in Verilog. The
keyword “module” is followed by the module name and
the port list.

The port list names and specifies all port signals as
inputs, outputs, or inout (bi-directional). Locally
declared wires and regs are typically declared
immediately following the module/port statement.

Combinational assignments are made using the assign
statement. Sequential assignments are made inside an
always block. A module can have any number of assign
statements and always blocks.

After a module is declared, it can be used instantiated
(i.e., used) in other modules by including the module
name and port connection list. “Named port
association” is recommended as shown in the example:

“.modulepinname(localname)”

module simple(
input A, B;
output X, Y;

);

wire Z = 1b’1;

assign X = A & Z;
assign Y = A & B;

end module

module next(
input C;
output K;

);

wire D = 1b’1;
wire F,G;

simple(.A(C),.B(D),.F(X),.G(Y))
assign K = F & G;
end module

Structural Verilog: Using modules as building blocks
module full_adder(

input a,b,cin;
output y,cout

);
wire s1,c1,c2;

xor(s1,a,b);
xor(y,cin,s1);
and(c1,s1,cin);
and(c2,a,b);
or(cout,c1,c2);

endmodule

module adder_4bit(
input [3:0] x,y;
input cin;
output[3:0] sum;
output cout

);
wire c1,c2,c3;

full_adder fa1(.a(x[0]),.b(y[0]),.cin(cin),.y(sum[0]),.cout(c1));
full_adder fa2(.a(x[1]),.b(y[1]),.cin(c1),.y(sum[1]),.cout(c2));
full_adder fa3(.a(x[2]),.b(y[2]),.cin(c2),.y(sum[2]),.cout(c3));
full_adder fa4(.a(x[3]),.b(y[3]),.cin(c3),.y(sum[3]),.cout(cout));

endmodule

Y

Cout

A
B

Cin fa1
sum0

x0
x0

Y

Cout

A
B

Cin fa2
sum1

x1
y1

Y

Cout

A
B

Cin fa3
sum2

x2
y2

Y

Cout

A
B

Cin fa4
sum3

x3
y3

cout

Cin

Adder_4bit

This example uses the Verilog “built in” logic
modules of and, or, and xor. These module
instantiations use “positional association”,
which means the order of signals must match
in the module and in the instantiation – they
are matched left to right. In this case, the
format is output name, followed by inputs.

Hierarchical design

Larger digital systems use
hierarchical design, with a
top level module that
instantiates lower level
modules.

Each module at every level
is designed and tested
independently. Leaf modules
typically use behavioral
design, while higher levels
typically use structural
design.

Y

Cout

A
B

Cin fa1
sum0

x0
x0

Y

Cout

A
B

Cin fa2
sum1

x1
y1

Y

Cout

A
B

Cin fa3
sum2

x2
y2

Y

Cout

A
B

Cin fa4
sum3

x3
y3

cout

Cin

Adder_4bit

x

y

Cin

Cout

sum

x

y

Cin

Cout

sum

x

y

Cin

Cout

sum

x

y

Cin

Cout

sum

Adder_16bit

X[15:0]

Y[15:0]
Y[15:0]

Cin

Cout

Adder_16bit
Data B

Data A

Digital System

Multiplexor Examples

module mux_4_4(
input [3:0] I0,I1,I2,I3,
input [1:0] Sel,
output [3:0] Y

);

assign Y=(Sel==2’d0) ? I0 :
((Sel==2’d1) ? I1 :
((Sel==2’d2) ? I2 : I3));

reg [1:0] Y;

always @ (Sel, I0, I1, I2, I3) begin
if (Sel == 2’d0) Y = I0;
else if (Sel == 2’d1) Y = I1;
else if (Sel == 2’d2) Y = I2;
else Y = I3;

end

reg [1:0] Y;

always @ (Sel, I0, I1, I2, I3) begin
case (Sel)

2’d0: Y = I0;
2’d1: Y = I1;
2’d2: Y = I2;
2’d3: Y = I3;
default: Y = 2’d0;

endcase
end

Using a Case statement

Using if statement

Using assign statment

ALU Example module alu(
input [7:0] A,B,
input [3:0] Sel,
output [7:0] Y

);

reg [7:0] Y;

always @ (Sel, A, B) begin
case (Sel)

3’d0: Y = A + B;
3’d1: Y = A - B;
3’d2: Y = A + 1;
3’d3: Y = A - 1;
3’d4: Y = A | B;
3’d5: Y = A & B;
3’d6: Y = A ^ B;
3’d7: Y = ~A;
default: Y = 7’d0;

endcase
end

Flip-Flops and Latch module dff(
input clk, rst, D;
output Q

);

always @ (posedge(clk), posedge(rst))
begin

if (rst == 1) Q <= 1'b0;
else Q <= D;

end

endmodule

module dff(
input clk, rst, D;
output Q

);

always @ (posedge(clk))
begin

if (rst == 1) Q <= 1'b0;
else Q <= D;

end

endmodule

module dlatch(
input gate, rst, D;
output Q

);

always @ (gate or rst or D)
if (rst == 1) Q <= 1'b0;
else if (gate) Q <= D;

endmodule

D Flip-flop
Asynch reset

D Flip-flop
Synch reset

State Machine Models

State
Register

Output
Logic

Next-State
Logic

Clk
RST

Circuit
Inputs

State
Register

Combo
Logic

Clk

RST

Circuit
Inputs

Circuit
Outputs

Circuit
Outputs

Mealy Model State Machine Combined Model State Machine

Present
State

Next
State

Present
State

Next
State

Background

State Machines module fsm1 (
input x, y, z, clk, rst;
output bell, led1, led2;

);

localparam init = 2’b00; // define state identifiers
localparam pick = 2’b01;
localparam left = 2’b10;
localparam right = 2’b11;

Reg [1:0] ps, ns // define ps, ns bus signals

always @(PS, x, y, z)
case (PS)

always @(posedge(clk),posedge(rst))
if (rst) PS <=0;
else PS <= NS;

assign bell = (ps == pick);
assign led1 = (ps == left || ps == right);
assign led2 = (ps == right);

end module

always @(ps, x, y, z)
case (ps) // One always block used to

// define next-state logic
endcase; // (see next page)

end

always @(posedge(clk),posedge(rst))
if (rst) ps <=0;
else ps <= ns; // 2nd always block used to

end // define state register

This is a common (and good!) way to code
state machines:

1) Choose state codes, define state
localparams, and define ps and ns busses;
2) Use two always blocks – one for next-
state logic (combinational), and one for the
state register; 3) assign outputs.

init

pick

left right

X

X

YY

Z Z

Z

Z

BELL

LED1 LED1
LED2

State Machine (con’t)
case (ps)

init: begin
if (x == 1) then ns = pick;
else ns = init;

pick:
if (y == 1) then ns = right;
else ns = left;

left:
if (z == 1) then ns = right;
else ns = init;

right:
if (z == 1) then ns = pick;
else ns = left;

default:
ns = init;

endcaseCase statement for FSM on previous
slide

init

pick

left right

X

X

YY

Z Z

Z

Z

BELL

LED1 LED1
LED2

Testbench
A testbench is a separate Verilog source file that is written specifically to
test other Verilog modules. It uses Verilog structures, syntax, and rules,
plus a few extra items that are intended specifically to drive the simulator,
and not to define a circuit.

A testbench is a module. It starts with a module declaration like any other
Verilog source file (it is typical to name the module after the module being
tested. We’re testing the 4bit adder presented earlier, so we added “_tb”
to the original module’s name). The testbench module has no inputs or
outputs – it doesn't need them. Instead, it will connect to the inputs and
outputs of the module being tested.

Next, we instantiate the module to be tested by proving the module name
(adder_4bit) and giving it an instance name (here we use “dut” for “device
under test”), and connect the ports. It is typical to use the same port
names in the testbench module as were used in the dut.

The remainder of the testbench source file drives inputs into the
simulator.

module adder_4bit(
input [3:0] x,y;
input cin;
output[3:0] sum;
output cout

);

4-bit adder module statement from earlier
example (reproduced for reference)

module adder_4bit_tb;

wire [3:0] x,y,sum;
wire cin,cout;

adder_4bit dut (
.x(x),.y(y),.cin(cin),
.sum(sum),.cout(cout)

);

Testbench con’t

A typical testbench uses an “initial block” to drive input signals
with changing logic values over time. Initial blocks are only used
in testbenches – they are not synthesizable.

The characters “ #n “ (where n is a number) that appear prior to
inputs specify simulation delays before signals take the assigned
values. Delays are specified as “n” time scale units that default to
some number – you can optionally set the time scale by including
“ ’timescale 1ns/1ps” in your file (this sets the time step to 1ns,
and the precision to 1ps).

It is often more efficient to use a loop in the testbench to
automatically create larger numbers of test patterns. For example,
to create every possible combination of the 4-bit “x” adder inputs,
the loop shown to the right is an efficient method.

initial
begin

x = 0; y = 0; cin = 0;
#10 x = 5;
#10 cin = 1;
#10 y = 3;

end;

integer k;

initial

begin
for (k=0; k<16; k=k+1)
#10 x = k;

#10 finish;
end;

Miscellaneous

Memory Arrays: Verilog models memory as an array of regs. Memories are accessed by providing an
array access. Examples:

reg[7:0] mem1[0:255] // a 256 byte memory with 8-bit bytes
reg[31:0] mem2[0:1023] //1K memory with 32-bit words

temp = mem1[20] // load temp from mem1 location 20

Other types: “Integer”, “time”, and “real” are legal Verilog variable types that are used in behavioral
modeling and in simulation, but rarely in sauce code intended for synthesis.

	Slide Number 1
	Slide Number 2
	Concepts: Behavioral vs. Structural Models
	Concepts: Behavioral vs. Structural Models
	Example: Behavioral vs. Structural Models
	Slide Number 6
	Concept: HDLs can be Simulated and/or Synthesized
	Slide Number 8
	Slide Number 9
	Design Projects
	Models for Synthesis
	Verilog Modules: A first look
	Verilog Modules
	Concept: Sequential vs. Concurrent Models
	Concurrency: Modelling time
	Concurrency: Modelling time
	Concurrency: Modeling time
	Verilog Concurrency Model
	Verilog Concurrency Model
	The Verilog Language
	Verilog Syntax: Identifiers and Numbers
	Verilog Syntax: Constants and Parameters
	Verilog Syntax: Operators
	Wires and Assignments
	Registers and Assignments
	Always Procedural Block
	Procedural Assignments: Blocking vs. Non-blocking
	Procedural blocks: If-then and Case statements
	Procedural blocks: If-then and Case statements
	Procedural blocks: If-then and Case statements
	Modules
	Structural Verilog: Using modules as building blocks
	Hierarchical design
	Multiplexor Examples
	ALU Example
	Flip-Flops and Latch
	State Machine Models
	State Machines
	State Machine (con’t)
	Testbench
	Testbench con’t
	Miscellaneous

