
Memory Systems

Memory Needs

Data Temp data/operand store for programs

Function Description Volatility Size Speed Access Portable

V Direct N

Instructions Opcode storage for executing programs V/NV Direct Y/N

Parameters BIOS settings, configurations NV Direct N

OS/System System and user programs NV Indirect N

Data file store Audio, video, other mass-store data NV Indirect Y/N

Technology

DDR/SRAM

DDR/SRAM/Flash

EEPROM/Flash

HD/SSD/SD/Flash

HD/SSD/SD/Flash

Fast memory busses (like DDR) use different physical pin drivers than regular busses

Large-array memory busses (like HD) use high-speed serial busses like SATA or PCIe

Dynamic memory (like DDR) has much smaller cell size and much higher density, but
must be refreshed

Main types of memory
Volatile (RAM): DDR, SRAM, PSRAM, Cellular RAM

Non-volatile (ROM): ROM, EEPROM, Flash, HD (magnetic)

Mass-store (magnetic and solid-state)

Dynamic vs. Static
High-speed vs. regular

In-system vs. Removable

Dynamic: DDR, PSRAM, Cellular Static: SRAM
High speed: > 200MHz

Serial vs. parallel
Multiplexed
Synchronous/piped/burst

Serial vs. parallel

Flash vs. EEPROM

Multiplexed port vs. Multiplexed part

High throughput – device changes its own address

Micron: Leading supplier of RAM and ROM

Where’s the SRAM?

Micron: Leading supplier of RAM and ROM

Where’s the SRAM?

ISSI: Leading supplier of non-leading-edge RAM and ROM

ISSI: Leading supplier of non-leading-edge RAM and ROM

Bus partitions
Typically one physical bus, but many different potential devices/technologies.

Different devices have different timing, control, drive levels, etc

RAM

ROM
Flash

HD
SSD

SD
Flash

Processor
RAM could be DDR,
SRAM, PSRAM (see
Micron, ISSI)

Could be HD, SSD, eMMC(?),
other

Could be SD, other? Devices
are serial, but could use bus
interface IC

ROM could be Nand/Nor,
parallel or serial Flash

One external bus? Multiple?

All have different
timings, protocols,
signals, drivers, etc.

Different address ranges on same bus may need to behave differently

External Memory Interface (Busses)

Should processor bus be designed for:
Processor RAM1

Addr
Data

CS1

WE
OE

Main off-chip bus

RAM2CS2

ROM

CS2
CS3
CS4

DDR? SRAM? What speed? What width?

Can bus accommodate different devices or
technologies?

Different access speeds?

Bus Grant/Bus acknowledge
Bus hold-off (dynamic wait state)

Different control signals?

Different signal drive/protocols?

ZYNQ

External busses typically target one
type of memory; if more flexibility
needed, more busses used

ST ARM

http://ww1.microchip.com/downloads/en/DeviceDoc/60001455C.pdfPIC32

http://ww1.microchip.com/downloads/en/DeviceDoc/60001245A.pdf

A typical higher-performance configuration

Single bank of homogenous RAM

If multiple chips, all are similar

System software loaded from ROM into RAM
for execution

Processor RAM
Addr
Data

CS
WE
OE

Main off-chip bus
RAM: high speed, data and program

EEPROM
SCL

SDA

SD Card
SS

SCK
SDIO

ROM may be HD/SSD, SD, or network

A typical lower-to-midrange-performance configuration

Single bank of homogenous RAM

If multiple chips, all are similar

Single bank of parallel ROM that shares
same bus; timings similar enough

Processor RAM1
Addr
Data

CS1

WE
OE

ROMCS2
CS2
CS3
CS4

EEPROM
SCL

SDA

SD Card
SS

SCK
SDIO

Booting
Ram is loaded from external source (like SD card)
during “boot” sequence

Processor RAM
Addr
Data

CS
WE
OE

Main off-chip bus
RAM: high speed, data and program

EEPROM
SCL

SDA

SD Card
SS

SCK
SDIO

What is a “boot” sequence?
Pull oneself up by your own bootstraps –
i.e., improve the situation without outside
help, in small measured steps

Power applied, reset released, then what?

Fetch first instruction… from where?
Fixed address; must contain ROM that
responds to “natural bus cycle”

(Some processors execute from parallel ROM)

Program Execution
Source code you develop is stored in a file
managed by the operating system. The tools
compile the source, create an .elf (or other
format) object file that can be placed in
memory and directly executed.

Where should it be placed? How can it be
placed?

The .elf was built using a symbol table that
contains relative addresses for data and
program redirects. It can be loaded anywhere
in RAM for execution.

ROM

Media

HD/SSD

Network

Processor RAM1
Addr
Data

CS1

WE
OE

Should the source file creator need to know
where it might end up?

Models

One programmer, one application: program can be “hard located” in memory

How to inform programmers where to locate programs? Can’t!

Multiple programmers: programs can’t be “hard located” in memory – how could they
be, given changing code size, changing stack/heap size, changing data needs

One programmer, multiple applications: programs may be “hard located” in memory

Solution: Every program gets the same view of memory and resources – every
program can assume it is the only program.

Implementation: Does the OS sort out what’s loaded where? Would that even work?

Absolute vs. relative references in code base

Virtual Memory

Only practicable solution: hardware does dynamic address translation in real-time

All programs can be written as if they were the only program running
OS assigns physical memory location
MMU maps every address to a physical address on the fly

Compiler/Assembler do not need to know about execution environment

Every single LOAD/STORE memory address passes through MMU and gets translated

Note: PC-relative indexing works regardless of physical addresses

Virtual Memory

Mass
store

Main
memory

Allocated
view

Not
Allocated

App1

App2
App3

App1

App2

App3

Main memory is much
smaller and much
faster than mass-store
memory where non-
executing programs are
stored.

All application programs assume they
start at address 0, and they rely on
the OS to assign a location in physical
memory, and the MMU to translate
virtual addresses in real time.

Some applications are larger than
their allocated memory.

More applications may be pending;
some applications may need to
surrender their main memory
allocations to allow other programs
to run.

OS allocates memory to
applications. Allocated
memory need not be same
size as executable code.

Virtual Memory

Files are divided into “pages”.
Pages are swapped in and out
of physical memory as needed.

If an access to a non-resident
page is requested, a “page
fault” occurs and processing
must stop until page is loaded.

Virtual addresses showing
example page sizes – pages
range from a few KBytes to
many KBytes.

Application .elf file
with virtual addresses

Application
divided into
“pages”; each
page can be
placed in main
memory as
needed

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page n

Page 1

Page 2

Page A

Allocated physical
memory

0000 0000

0000 4000

0000 8000

002A 8000

002A C000

002B 0000

0000 C000

0001 0000

0001 4000

0001 8000

000N M000

Virtual Memory: Constructing physical addresses

Application .elf file
with virtual addresses

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page n

Page 1

Page 3

Allocated physical
memory

0000 0000

0000 4000

0000 8000

002A 8000

002A C000

002B 00000000 C000

0001 0000

0001 4000

0001 8000

000N M000

?

This example uses a 16K page; the lower 14 bits
are the same for the virtual and physical address.

For a 32-bit address, the upper 18 bits must be
“mapped” from the virtual address into the correct
physical address space.

A “page table” stored in main memory stores the
upper 18 bits of the physical base address of each
page. The address stored for page 3 is 002AC.

Virtual address 0000 8123 would map to physical
address 002A C123.

Virtual Memory: Translation look-aside buffer

Application .elf file
with virtual addresses

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page n

Page 1

Page 3

Allocated physical
memory

0000 0000

0000 4000

0000 8000

002A 8000

002A C000

002B 00000000 C000

0001 0000

0001 4000

0001 8000

000N M000

?

If every translation required an access to main
memory to retrieve the upper 16 bits, the memory
would run at half speed. Some number of page
table entries are stored in a cache called the TLB.

If the referenced page is in physical memory, it’s
“tag” (the upper 16 bits) will be in the TLB and the
physical address can be constructed quickly.

How is the tag located? CAM.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

