Verilog
An Introduction

Introduction

Verilog is a “hardware design language” (HDL) that uses C-like syntax
and constructs. Verilog is used to describe digital circuits and systems.

A o
module example (input A, B, C, output X); : _D_
assign X = (!A|B|C)&(B|C)&('A|B] !C); D__:}X
endmodule i

This is an example Verilog source file

Introduction
Verilog can be simulated to check logic functions...

module example (input A, B, C, output X);
assign X = ('A|B|C)&(B|C)&('A|B]|!C);
endmodule

=5 >-
)
module simple tb(); This file is a “testbench” :} >

reg A, B, C;
example cut(.A(A),.B(B),.C(C),.X (X))
initial begin

(@loch

A=0; B=0; C=0; #10;
A=0;B=0;C=1; #10;
A=0;B=1;C=0; #0; I
Name Value | |[UERlulas -t
A=1;B=1; C=1; #10;
end
endmodule

Introduction
Verilog can be synthesized into a physical circuit...

module example (input A, B, C, output X);
assign X = (!'A|B|C)&(B|C)& ('A|B]| !'C);
endmodule

(@loch

i

Introduction
Verilog can describe a circuit’'s high-level behavior

module example (input A, B, C, output X);
assign X = ('A|B|C)&(B|C)&('A|B]|!C);
endmodule

(@loch

e
=D

Behavioral descriptions use abstract assignments with no information
to indicate how a circuit might be constructed

Introduction

Verilog can describe a circuit’'s high-level behavior...

module example (input A, B, C, output X);
assign X = ('A|B|C)&(B|C)&('A|B]|!C);
endmodule

... or its low-level structure

module example (input A, B, C, output X);
wire nl, n2, n3, n4, n5;
not (nl, A);
not (n2, C);
nor (n3, nl, B, C);
nor (n4, B, C);
nor (n5, nl, B, n2);
nor (X, n3, n4d, nb5);

endmodule

(@loch

1 X

e
) -

Structural descriptions
are netlist-like, and
define how components
are connected to make
the circuit

Introduction

Verilog is not a sequential programming language like C or Java. A
sequential language describes step-by-step algorithms, and the
seguence of instructions matters.

vold bubbleSort (int al[], 1int n) void bubbleSort (int al[], int n)
{ {
int 1, 3J; int 1, J
for (1 = 0; 1 < n-1; 1i++) for (1 = 0; 1 < n-1; 1i++)
for (J = 0; J < n-i-1; Jj++) for (J = 0; J < n-i-1; Jj++)
if (a[3j] > al[j+1]) if (a[j] > al[j+1])
{ {
int temp = alj]; alj] = alj+t1];
alj] = alj+tl]; int temp = aljl;
alj+l] = temp; alj+l] = temp;

} }

Introduction

Verilog is concurrent

module netlist (
input A, B, C,
output X
) ;

wire N1,N2,N3,N4,N5;

assign N1 = !A;

assign N2 = !C;

assign N3 = N1 | B | C;
assign N4 = B | C;
assign N5 = N1 | B | N2;
assign X = N3 & N4 & N5;

endmodule

. Simulations are event-driven, so statement
order does not matter.

Ow >

Both descriptions will simulate

and synthesize identically

e

/
D
1A

= =D

module netlist (
input A, B, C,
output X
) ;

wire N1,N2,N3,N4,N5;

assign N5 = N1 | B | N2;

assign N1 = !A;
assign X = N3 & N4 & Nb5;
assign N2 = !C;

assign N3 = N1 | B | C;
assign N4 = B | C;

endmodule

Verilog Modules — A first look Simpie nodule simple

input A, B,

Verilog source files contain modules. All output X, Y
circuits are described in modules — they are

the building blocks of Verilog designs.

) ;

wire Z = 1b’1;

_ _ _ _ assign X = A & Z;
Modules include port declarations that identify assign Y = A & B;

Input and output signals, and assignment end module
statements that describe the circuit.

The keyword module is followed by the name and the port list. The name can be
any legal text string. Modules are identified by this name, not by their file name.

Ports define the signals that transport information in and out of modules. Every
port signal has a name and a type (input, output, or inout).

Every module can be in its own file, or any number can be in a single file.

Verilog Modules — A first look

Designs can use multiple modules, for the same

reason C programs use subroutines. A top-level
module contains all other modules.

Wires transport signals inside a module. They
must be declared before use.

Any module can be used as a component in
any other module.

Next

module simple (
_ input A, B,
S output X, Y

wire 7z = 1b’'1;

assign X = A & Z;
assign Y = A & B;

end module

T i 5 fedle newt |

A port map statement gTZ—DS'mplef .
“instantiates” an Y :)—K
included module and TD—BD—'Y ¢

defines connections

//»——+51mple(A(C

.component_port(topmodule_port)

input C,
output K

) ;
wire F,G,D = 1’bl;

), .B(D), . F(X),.G(Y));
assign K = F & G;
end module

ldentifiers and Numbers

|dentifiers: space-free upper and lower case letters (Verilog is case sensitive),
numbers, , and $. Can’t begin with a digit; limited to 1024 characters.

Numbers: <size>' <base> <value>
size: decimal number that specifies number of bits
base: ' character followed by b (binary), d (decimal), h (hex)
value: set of digits

Examples: x=4'b0101 y4 b=4'dl2 z$12=16'hAB12
Spaces, tabs, and new lines and form feeds can separate words and are ignored.

Note: If no size is given, a 32-bit decimal number is assumed

Operators

%
<<

>>

[]

Add
Subtract
Multiply
Divide
Modulus
Shift left
Shift right

Bit select

&&

i
{}

Negation
Bit-wise negation
Bit-wise And
Bit-wise Or
Bit-wise Xor
Logical And
Logical Or

Concatenation

> | Greater than

< | Lessthan

>= | Greater or equal
<= | Lesser or equal
== | Case equality

I= | Case inequality
? | Conditional

{{}} Replication

Data Types

Verilog includes two data types to aid circuit model construction: Net
types to model wires, and Variable types that can store data.

Net types model wires, and do not store values. They are continuously
driven, and their value is determined by the values of their drivers. Net
types are used to transport data between circuit elements.

Variables types store values. Variables are used when a circuit’'s next
state depends on current state. A procedure checks relevant signals
and updates a variable when certain conditions are met.

Net and variable values can only be 1, 0, X, and Z.

Net Types
Net types include wire, tri, supplyO (0), and supplyl (1).

The wire type (most common) Is used for nets that are driven by a
single gate. They transport signals between circuit elements within a
module, between modules, or between modules and I/O pins. Wires
are assigned new values using the keyword assign.

The tri type Is very similar to wire and can be used to model three-
state signals, where multiple gates can drive the same net. It is not
commonly used.

Supplyl/supplyO model Vdd and Gnd connections, and are also not
commonly used.

Wire types

The Wire type models physical wires. Wires must be declared before use.

wire a, b, c; //multiple wires can be defined at once
wire d = 1'b0; //declares wire d and assigns to O

Busses are groupings of wires

wire [3:0] bus4; //bus definition
wire [(4:0] X, [7:0] Y; //multiple definitions per line OK
wire [7:0] Z = 0; //value can be assigned

Arrays are groupings of busses

wire [7:0] A [3:0]; //Define four 8-bit busses A[1l], A[2],..

Assigning values to wires

Wires are assigned new values using an assign statement.

assign X = 1; assign Y = 4'b0011;
assign 2 = A & B; assign W = (A | B) & ~(C | ~D);

Busses can also be assigned using an assign statement. Busses are
assigned “left-most to left-most™. They do not need to be the same size.
wire [7:0] X, // Declare two 8-bit busses

X, Y
wire [4:0] I, J // Declare two 5-bit busses
wire [2:0] Z // Declare 3-bit bus

assign X =Y // X[T7:0] <= Y[7:0];

assign X = 1I // X[7:3] <= Z[4:0]; X[2:0]

assign X = {Z,J) // X[7:5] <= Z and X[4:0] <= J {,} is concatenation
assign X = {I,J} // X[7:3] <=1 and X[2:0] <= J[4:2] operator

Wires connecting one module to another must have matching widths.

Assigning values to wires

A conditional (or ternary) operator can be used to drive a wire from
one of two sources. Y Is the output of a 2:1 mux:

assign Y = (Sel == 0) ? I0 : Il1;
The sources can be logic functions:

assign Y = (X == 0) ? (A|B) : (C| (D&!'E));
Nesting Is permitted:

assign Y = (X1 == 0) ? Il : ((X2 == 1) ? I2 : 0);

Note: parenthesis are optional, but they help readability

Variables

Variable types (reg, integer, real, time, realtime) define memory in the
simulator (not in the circuit being described). Variables let the simulator
preserve the state of a net, which is needed when a procedure
determines how to drive a signal (e.g., as the result of an if statement).

Variables are modified using blocking (=) or nonblocking (<=)
assignments . Blocking assignments update variables immediately,
before any further statements are executed (like C).

Non-blocking assignments schedule updates to occur at the end of the
procedure - this makes them concurrent. Subsequent statements are not
blocked, so there is no implied sequence and their order does not matter
(the order of blocking assignments very much matters).

Variable types

Only reg and integer types define synthesizable variables — the others
are used only in simulations. Like wires, variables must be declared
before use.

reg X, Y; // multiple regs can be assigned at once
reg [15:0] I; // I is a 1l6-bit wvariable

reqg z = 1 // Z is a variable initialized to 1
integer J; // J is a 32-bit integer variable

integer K = 27; // K is a 32-bit integer initialized to decimal 27

Procedural Blocks

Variables are assigned in “procedural blocks”. Procedural blocks house
simulator routines that modify variables. Variables can only be changed in
procedural blocks. Wires cannot be changed in procedural blocks.

Statements in procedure blocks execute in order (sequentially, like C).
Procedures can include if and case statements — If if/case statements
are not needed, then a procedure is not needed.

Example: Assign Q=D If a rising clock edge occurred. A procedure must
check a condition (clk edge?) before the assignment happens:

if (posedge(clk)) Q = D;

Procedural Blocks

Two primary procedural blocks are available: the initial block used to
define simulator inputs, and the always block used to define circuits.

An initial block always runs once at the start of a simulation. It is used to
define simulator inputs, and will be discussed later.

An always block executes whenever a sensitivity list signal changes (so
the block is always active watching for a change in the sensitivity list).

always @ (X,2Z,C,D) begin The sensitivity list follows always and
if X ==1) Y = Z;

B 5 . the @ sign. If one of the signals X, Z,
end S C, or D change, the block executes.

Procedural Assignments

always @ (X, Z,C,D) begin always @ (posedge(clk)) Q = D;
if X ==1) Y = Z;
W= (C | D);

end

If more than one signal is in the sensitivity list, parenthesis are required.

Function calls like “posedge(clk)” may be used in the list. Function calls
must be In parenthesis.

Note: The posedge function Is very commonly
used when writing code to infer a flip-flop.

Procedural Assignments

always @ (X, Z,C,D) begin
if (X ==1) Y = Z;
W= (C | D);

end

In the example code, Y and W are being assigned values inside the
always block, and so must be memory variables (type reg).

Y gets a new value (2) if X == 1, otherwise Y will remain unchanged.
How can Y remain unchanged? Memory! (a flip-flop).

Unspecified conditions in an if/case always
iInfer memory in a synthesized circulit.

If statement

If/else statements can only be used
Inside a procedure block. They assert
signals in response to specified
conditions.

They are commonly used to infer
memory, but they can describe
combinational logic if all conditions
are checked.

Any conditions with unspecified
action will result in memory.

always @ (A) begin
if (A==1'bl) X = I1;
end

always @ (A) begin
if (A == 1'b0) X = I1;
else if (A==1'bl) X = I2;
end

always @ (A) begin
if (A) begin
X =1I1; ¥ =1I2;
end
else X = 1I2;
end

always @ (A) begin
if (A==1'bl) X = I1;
else X = 1'b0;

end

If statement always @ (A) begin

if (A==1'bl) X = I1;

d
If/else statements can only be used en
Inside a procedure block. They assert always @ (A) begin
signals in response to specified if (A == 1'b0) X = Il;
cff else if (A==1'bl) X = I2;

conditions. N
They are commonly used to infer always @ (A) begin
memory, but they can describe if (A) begin
combinational logic if all conditions P A
are checked. else X = I2;

y . - end
Any conditions with unspecified
action will result in memory. BNEND &) 16T

if (A==1'bl) X = Il1;
else X = 1'b0;
end

Case statement

The case statement Is essentially a compound if statement, and so the
same rules apply: if you don’'t want memory, specify all conditions.

always @ (I) always @ (1)

case (I) case (I)
3'dO0: Y = 8'dl; 3'd0: Y = 8'd1,’
bl 232 31dl: Y = 8'd2;
31d3: Y = 8'd8; 3'd2: Y = 8'd4;
3'd4: Y = 8'dl6; 3'd3: ¥ = 8'd8;
3'd5: Y = 8'd32; 3'dd: Y = 8'dl6;
3'd6e: Y = 8'do4; 3'db: Y = 8'd32;

endcase 3'do: Y = 8'doe4;

end; 3'd7: Y = 8'dl28;

endcase

end;

Case statement

The case statement Is essentially a compound if statement, and so the
same rules apply: if you don’'t want memory, specify all conditions.

always @ (I)
case (I)

3'd0:
3'dl:
3'd2:
3'd3:
3'd4:
3'd5:
3'd6:

endcase
end;

KKK KKKHK

8'dl;
8'd2;
8'd4;
8'd8;
8'dlo;
8'd32;
8'do4;

always @ (I)

case (I)

3'dO:
3'dl:
3'd2:
3'd3:
3'd4:
3'd5:
3'd6:
3'd7:

endcase
end;

H KKK KKKEK

= 8'dl;

= 8'd2Z;

= 8'd4;

= 8'dS§;

= 8'dl6;
= 8'd32;
= 8'do4;
= 8'd128;

Creating memory (flip-flops/latches)

Variable types may or may not synthesize to a memory device in a
physical circulit.

Memory Is inferred from if/case statements when assignments are not
defined for all conditions.

If you want memory, check for posedge(clk), and use a non-blocking
assignment (<=).

always @ (posedge(clk), rst)
if (rst) Q <= 0;
else Q <= D;

end

Avoliding unintentional memory/latches

If you do not want memory, do not check posedge(clk), account for
all possible conditions of sensitivity list variables, and use blocking
assignment (=). Using (*) in the sensitivity list helps as well — it

triggers the always block if any variable used in the block changes.

Use defaults: Check all conditions:
reg [1:0] y; reg [1:0] y;
wire [1:0] x;
always @ (A, B) begin always @ (*) begin
y = 2’'b00; if (x==2'b00) y = 2'b01;
if (A) y = 2'b01; else if (x==2'bl0) y = 2’'bll;
else if (B) y = 2’'bll; else y = 2'b00;

end end

Procedural Assignment Examples

module blocking (
input d, clk,
output reqg ql,g2,93,94,95

)
always @ (posedge clk) begin
ql <= d;
g2 <= ql;
g3 = d;
q4d = g3;
g5 = g2;
end
endmodule

clk

q3, q4

ck _[T1[1 ||| || || L
d__F—lg |
al= [1
42 ! ! |7
0I3::|___[__—I |
q4:j_____j
a5 : : i

Procedural Assignments

Don’t assign the same variable from more than one always block.

A module can have any number of always blocks. Statements in a
procedural block are sequential, but the blocks themselves are
concurrent to other blocks and assign statements.

If an always block has more than one line, begin and end are needed.
Memory circuits can only be inferred inside always blocks.

Combinational circuits never need to use an always block, but they can
(if/case can make circuits clearer and easier to read, but watch out!).

Do not mix <= and = assignments in same always block (better to use
two blocks)

Operators: A more detailed look

%
<<

>>

[]

Add
Subtract
Multiply
Divide
Modulus
Shift left
Shift right

Bit select

I |Negation
~ | Bit-wise negation
& | Bit-wise And
| | Bit-wise Or
A | Bit-wise Xor
&& | Logical And
|| | Logical Or

{} Concatenation

> | Greater than

< | Lessthan

>= | Greater or equal
<= | Lesser or equal
== | Case equality

I= | Case inequality
? | Conditional

{{}} Replication

Arithmetic Operators: add (+), subtract (-), multiply (*), divide (/), modulus (%);

module arith (
input [7:0] A,
input [7:0] B,
output [15:0]
) ;

Y1, Y2, Y3, Y4, Y5

assign Y1 = A + B; // Y1[8:0] = A + B; Y1[15:9] = 0

assign Y2 = A - B; // Y2[7:0] = A - B; Y1[15:8] =0

assign Y3 = A * B; // Y3[15:0] = A * B

assign Y4 = A / B; // Y4[15:0] = A / B fractional part discarded
assign Y5 = A % B; // Y5[7:0] = A mod B remainder

endmodule

If any operand bit has a value “x”, the result of the expression is all "x”.

For modulus operation, results take the sign of the first operand.

Arithmetic Operators with negative numbers

Adding and subtracting two’s compliment numbers works as expected, but
multiplying 2’s compliment numbers requires a different hardware circuit.

Using the keyword “signed” will ensure values are represented in 2’s
compliment and that proper circuits are used.

wire [7:0] A,B; wire signed [7:0] A,B;
wire [15:0] Y, wire signed [15:0] Y;
assign Y = A * B; assign Y = A * B;

Logical/Bit-wise Logic Operators: and (&&, &), or (||, |), not (!, ~), xor (), xnor(*~)
module logic(input [7:0] A, B, output Y1, Y2, Y3, [7:0] Y4, Y5, Yo);

assign Y1 = A && B;

assign Y2 = A || B; A[7:0] B[7:0] Y1 Y2 Y3 Y4[7:0] Y5[7:0] Y6[7:0]
ASEAEN LS = A 7 0 0 1 0 0 7 F8
assign Y4 = A & Bj; 0 0 0 0 1 0 0 FF
assign Y5 = A | B; 5 5 1 1 0 5 5 FA
SRS = S 5 F 1 1 0 5 F FA

Logic operators (&&, | |, !) return one bit. Bit-wise operators (&, |, ~) return vectors and
operate bit by bit (leftmost to leftmost); mismatched length operands are zero-extended

Using bit-wise operators with a LHS wire and RHS bus operates only on bus LSB
Using logical operators with a LHS bus and RHS wires operates only on bus LSB

Expressions like (A == 2) && (B == 3) evaluate to 1 if all comparisons are true

Reduction Operators: and (&), nand (~&), or (|), nor (~|), xor (), xnor (*~)

module reduction(input [7:0] A, output Y1, Y2, Y3);

assign Y1 = &A;

assign Y2 = |A;
assign Y2 = ~|A; FF 1 1 0 0

' Y3 = "A;
assLgh 01 0 1 0 1
00 0 0 1 0

Reduction operators act on each bit of an input vector. Operations proceed
right-to-left on all operand bits and return a 1-bit result.

Relational Operators: equal (==), not equal (=), greater than (>), less than (<),
less-than-or-equal (<=), greater than or equal (>=), case equality (===, !==)

module equal (input [7:0] A, B, output Y1, Y2, Y3, [7:0] Y4, Y5, Yo6);

assign Y1 = (A==B) ? 1 : 0;
assign Y2 = (A!=B) 2 1 : 0;
assign Y3 = (A>=B) 2 1 : O;

1if (A < B) Y4 = 8'hFF;

case (B)
A > B : Y5 = 8'hAA;

Operands are compared bit by bit (leftmost to leftmost), with zero filling for
unequal lengths

Synthesize to very large, very slow circuits

Shift Operators: left (<<), right (>>), arithmetic right (>>>)

module shift (input [7:0] A, [2:0] amount, output [7:0] Y1);

assign Y1 = (A << amount);

assign Y2 = (A >> amount); A[7:0] m Y1[7:0] Y2[7:0] Y3[7:0]

assign Y3 = (A >>> amount); FO 010 co 3C FC
OF 010 3C 03 03
OA 100 AO 00 00
80 111 00 01 FF

Shift: Vacated bits zero-filled
Arithmetic right shift: Vacated bits filled with copies of MSB (sign extend)

Concatenation and Replication Operators:{,} and {{}}

module reduction (input D,E,F, [4:0] A, [3:0] B,[2:0] C,output [7:0] Y1,Y2,[9:0] Y3);

assign Y1 = {A, C}; // Y1[7:3] = A, Y1[2:0] = C

assign Y2 = {C, A}; // Y2[7:5] = C, Y1[4:0] = A

assign Y1 = {A, B}; // Y1[7:3] = A, Y1[2:0] = B[3:1]

assign Y2 = {D,E,A,F}; // Y2[7]= D, Y2[6]=E, Y2[5:1]1= A, Y2[0] =F
assign Y1 = {2{D},2{B}} // Y1[7:6] = D, D, Y2[5:0] = B, B

Joins/concatenates busses and/or wires bit by bit, leftmost to left most.

Replication allows repetitive concatenation

A quick review
_ _ _ _ _ module demo (
Combinational (wire) assignments use assign,; input A,B,C,clk,

variable assignments use an always block.);°“tput g Mo BEE] B Lip

Wire assigns are continuous; variables are wire D;
updated in always blocks and may result in |

assign X = A & B;
memOry. assign Y = X | C;
Assign statements/always blocks are always @ (clk) z <= B &! C;
concurrent. This example contains four oeve © (edl) ot
concurrent statements/blocks. T <= A;

if (B ==C) W <= A;

end

Z, W, and T are variables and must be type
reg. Note they are typecast to reg in the endmodule
module statement.

Hierarchical Design

Larger systems use 7
structural Verilog and L
hierarchical design. Atop- | R

level module instantiates
lower-level modules.
Complex designs may have
several levels of hierarchy.

—

Data B
Adder_16bit

Digital System

X[15:0]

Cin

Y[15:0]

A good partition (hierarchy) greatly enhances

debugging, readability, and maintenance.

Modules at every level are designed/tested
iIndependently. Leaf modules typically use
behavioral design, and higher modules use
structural design.

—p X

sum —p»

>y
Cout

Cin
—p X
sum —p

>y
Cout

Cin
—p X
sum —p

>y
Cout

Cin
—p X

sum —p>

_>y

Cout

Adder_16bit

Y[15:0]

Cout

Cin

7\

x0

x0

x1
yl

X2
y2

X3
y3

Adder_4bit

Structural Verilog

module full adder (
input a,b,cin;
output vy, cout
)
wire sl,cl,c2;
(sl,a,b);
xor (y,cin,sl);
and(cl,sl,cin);
and (c2,a,b);
or (cout,cl,c2);
endmodule

XOor

module adder 4bit (

input [3:0] x,y;
input cin;
output[3:0] sum;

output cout

wire cl,c2,c3;

full adder
full adder
full adder
full adder
endmodule

v Y O W

o~ o~ o~ o~

XoXo X X

e B e B e B e |

w N - O

~— S ~— ~—

~

~

~

~

This example uses the Verilog “built in” logic
modules of and, or, and xor. These module
instantiations use “positional association”,
which means the order of signals must match
in the module and in the instantiation — they
are matched left to right. In this case, the
format is output name, followed by inputs.

.b(y[0]), .cin(cin), .y(sum[0]), .cout (cl
b(y[1l]),.cin(cl), .y (sum[1l]), .cout (c2)
.b(y[2]),.cin(c2), .y (sum[2]), .cout (c3)
b (y[3]),.cin(c3), .y (sum[3]), .cout (cou

Cin
X0

X0 ——

x1

yl=—

Structural Verilog

module full adder (
input a,b,cin;
output vy, cout
)
wire sl,cl,c2;
(sl,a,b);
xor (y,cin,sl);
and(cl,sl,cin);
and (c2,a,b);
or (cout,cl,c2);
endmodule

XOor

module adder 4bit (

input [3:0] x,y;
input cin;
output[3:0] sum;

output cout

wire cl,c2,c3;

full adder
full adder
full adder
full adder
endmodule

v Y O W

o~ o~ o~ o~

XoXo X X

e B e B e B e |

w N - O

~— S ~— ~—

~

~

~

~

This example uses the Verilog “built in” logic
modules of and, or, and xor. These module
instantiations use “positional association”,
which means the order of signals must match
in the module and in the instantiation — they
are matched left to right. In this case, the
format is output name, followed by inputs.

This is an example to illustrate a point. You
could implement a 4-bit adder using behavior
Verilog:

assign sum =a+ b + cin;

.b(y[0]), .cin(cin), .y(sum[0]), .cout (cl
b(y[1l]),.cin(cl), .y (sum[1l]), .cout (c2)
.b(y[2]),.cin(c2), .y (sum[2]), .cout (c3)
b (y[3]),.cin(c3), .y (sum[3]), .cout (cou

Cin
X0

X0 ——

x1

Functions

Verilog functions are similar to functions in other languages: they encapsulate
often-used code, and they return a value that can be used in an expression.

They can have any number of inputs, and must have at least one. Positional
association is used.

Non-blocking assignments are not allowed. Re-entry is allowed with keyword
“automatic”.

module func example (input [7:0] A, B, output [7:0] Y);
function [7:0] sum (input [7:0] x, V),

sum = X + Vy;
endfunction

assign Y = sum (A, B);

endmodule

Observations when creating source files

Source files describe circuits, and circuits are defined in modules.

Source files use the following format:

module module name (port list)

declarations (wires, regs, functions)
l1tems (assign statements, always blocks, i1nstantiations)

endmodule

The port list defines the signals that transport information in and out of
modules. Every port signal has a name and a type (input, output, or
iInout).

Observations when creating source files

Modules can be simple (e.g., one line) or complex (hundreds of
lines), and any module can be used as a component in any other
module. Many modules can be in a single source file, or they can all
be in their own source file.

Simple systems can use behavioral code, in a single module, in a
single source file

For anything beyond the simplest designs, partition your design into
sensible blocks, write a (behavioral) module for each block, and use
structural Verilog at the top level to assemble the blocks.

Try to visualize the circuit you are defining when writing Verilog code.

Creating a Verilog design: A 4-bit adder

module FA (
input A,B,Cin,
output S,Cout) ;
wire sl,cl,c2,c3;
xor (sl,A,B);
xor (S,Cin,sl) ;
and(cl,A,B);
and(c2,A,Cin) ;
and (c3,B,Cin) ;
or (Cout,cl,c2,c3);

endmodule

Structural Verilog
positional port mapping

module FA (input A,B,Cin,

output S,Cout);

assign S = A B " Cin
assign Count = ((A“*B) &Cin) | (A&B);

Endmodule

“Semi-behavioral” Verilog

module FA (input A,B,Cin, Cout, S);

assign {Cout, S} = A + B + Cin;

endmodule

Behavioral Verilog

it}

!

Full Adder

—A
—1B

—CN

S

Cour

Cour

Design of a 4-bit adder: Structural

module adder 4bit (

input [3:0] X,Y,
input Cin,
output [3:0] Sum,

output Cout
)

wire cl,c2,c3;

full adder fal
full adder faZ2
full adder fa3
full adder fa4

endmodule

(.
(.
(.
(.

X[3:0] e

Cin

Y[3:0]

— Sum|[3:0]

Cour

module full adder(
input A,B,Cin,
output S,Cout
) ;

assign S = A“B“*Cin

Full Adder

A
B

Cin

S_

Cour[—

assign Count = ((A~*B) &Cin) | (A&B);

endmodule

Design of a 4-bit adder: Behavioral

module adder 4bit(input [3:0] A,B, output [3:0] Sum);

assign Sum = A + B;

endmodule

module adder 4bit(input [3:0] A,B, output [4:0] Sum); Adding two n-bit
assign Sum = A + B; numbers can yield

endmodule n+1 bit result

module adder 4bit(input Cin, [3:0] A,B, output [4:0] Sum); May want carry-in
assign Sum = A + B + Cin;

endmodule

module adder 4bit(input Cin, [3:0] A,B, output Cout, [3:0] Sum); Suml[4] is also
assign {cout, Sum} = A + B + Cin; carry out

endmodule

Use Comments! // on any line, or /*

/%
Seven Segment Controller
EE214 Project 3

Created 11/19/19

Johnny B. Goode

*/

Module "7segcont (
input [15:0] becd in
input clk
output [6:0] seg out
output [3:0] an out
)

etc.

//
//
//
//

Four packed BCD digits
Requires 100MHz input clock
7seg segment drivers

7seg digit enables

* for a block

Verilog Code Examples

Verilog contains a few built-in logic functions including and (&), or (|)
and not (!). You can use these to create more complex functions.

Verilog Multiplexor Examples

module mux4 (module mux4 (
input [3:0] I, input [3:0] I,[1:0] Sel,
input [1:0] Sel, output Y);
output Y

) ; module mux4 (input [3:0] I,[1:0] Sel, output Y);

“Conventional” More compact

Verilog Multiplexor Examples

module mux4 (
input [3:0] I,
input [1:0] Sel,
output Y

) ;

assign Y= !Sel[1]&!Sel[0]&I[0] | !'Sel[1]1&Sel[0]&I[1] | Sel[l]&!Sel[l]&I[2] | Sel[0]&Sel[1]1&I[3];
endmodule

Verilog Multiplexor Examples

module mux4 (
input [3:0] I,
input [1:0] Sel,

output Y
I
assign Y= !Sel[1]&!Sel[0]&I[0] | !'Sel[1]1&Sel[0]&I[1] | Sel[l]&!Sel[l]&I[2] | Sel[0]&Sel[1]1&I[3];
endmodule

assign Y=(Sel==2'd0) ? I[O0] ((Sel==2"d1l) 2 I[1] : ((Sel==2'd2) 2?2 I[2] : I[3])):
endmodule
assign Y=(Sel==2'd0) 2?2 I[0]

((Sel==2"dl) 2 I[1]

((Sel==2"d2) ? I[2] I[31));

endmodule

Verilog Multiplexor Examples

module mux4 (
input [3:0] I,
input [1:0] Sel,

output Y
I
assign Y= !Sel[1]&!Sel[0]&I[0] | !'Sel[1]1&Sel[0]&I[1] | Sel[l]&!Sel[l]&I[2] | Sel[0]&Sel[1]1&I[3];
endmodule
assign Y=(Sel==2'd0) ? I[0] : ((Sel==2'dl) 2 I[1] : ((Sel==2'd2) 2 I[2] : I[3]));
endmodule

wire nl, nO, a3, a2, al, a0, nSell, nSelO;

not invl (nSell, Sel[l]):;

not invO0 (nSel0, Sel[0]);

and ag0 (a0, nSell, nSel0O, I[O
and agl (al, nSell, Sel[0], I
and ag2 (a2, Sel[l], nSel0, I
and ag3 (a3, Sel[l], Sel[0], I
or ogO0(Y, a0, al, a2, a3);
endmodule

Verilog Multiplexor Examples

module mux4 (
input [3:0] I,
input [1:0] Sel,

output Y
) ;
assign Y= !Sel[1]&!Sel[0]&I[0] | !'Sel[1]1&Sel[0]&I[1] | Sel[l]&!Sel[l]&I[2] | Sel[0]&Sel[1]1&I[3];
endmodule
assign Y=(Sel==2'd0) ? I[0] : ((Sel==2'dl) 2 I[1] : ((Sel==2'd2) 2 I[2] : I[3]));
endmodule
wire nl, nO, a3, a2, al, a0, nSell, nSelO; assign Y= I([Sel];

endmodule
not invl (nSell, Sel[l]):;
not invO0 (nSel0, Sel[0]);
and ag0 (a0, nSell, nSel0O, I[O
and agl (al, nSell, Sel[0], I
and ag2 (a2, Sel[l], nSel0, I
and ag3 (a3, Sel[l], Sel[0], I
or ogO0(Y, a0, al, a2, a3);
endmodule

Verilog Multiplexor Examples

module mux4 (input [3:0] I,[1:0] Sel, output reg Y);

Using a Case statement

always @ (Sel,I) always @ (Sel,TI)
case (Sel) case (Sel)
2'd0: Y = I[0]; 2'd0: Y = I[0];
2'dl: Y = I[1]; 2'dl: Y = I[1];
2'd2: Y = I[2]; 2'd2: Y = I[2];
2'd3: Y = I[3]; default: Y = I[3];
endcase endcase
endmodule endmodule
always @ (Sel,I) always @ (Sel,I)
case (Sel) case (Sel)
2'd0: Y = I[0]; Sel: Y = I[Sel];
2'dl: Y = I[1]; endcase
2'd2: Y = I[2]; endmodule
endcase

endmodule I Memory

Verilog Multiplexor Examples

module mux4 (input [3:0] I,[1:0] Sel, output reg Y);

Using an If statement

Y
Y =
Y =
Y

always @ (Sel, 1I) always @ (Sel, 1I)
1if (Sel == 27d0) Y = I[0]; 1if (Sel == 27d0)
else 1f (Sel == 2'dl) Y = I[1]; else 1f (Sel == 2’'dl)
else 1f (Sel == 2'd2) Y = I[2]; else 1f (Sel == 2'd2)
else 1f (Sel == 2'd3) Y = I[3]; else

endmodule endmodule

always @ (Sel, I) begin

1f (Sel == 27d0) Y = I[0];
1f (Sel == 2'dl) Y = I[1];
1f (Sel == 2'd2) Y = I[2];
1f (Sel == 2'd3) Y = I[3];
end

endmodule

Bus Multiplexor

module mux4 (input [7:0] I3, I2, I1, IO, [1:0] Sel, output [7:0] Y);

assign Y= (Sel==2'd0) ? I0 : ((Sel==2'dl) ? I1 : ((Sel==2'd2) ? I2 : I3));

endmodule

Parameters can hold values used to define circuits during simulation and synthesis. For example,
the mux data path width could be defined by a parameter so it could more easily be changed:

module mux4 # (parameter W=1l) (
input [W-1:0] I0,I1,I2,I3,
input [1:0] Sel,
output [W-1:0] Y);

assign Y = (Sel==2'd0) ? IO ((Sel==2'dl) ? I1 : ((Sel==2'd2) ? I2 : I3));

endmodule

Verilog Decoder Examples
module dec 2 4 (input [1:0] I, output [3:0] Y);
assign Y= (I==2'd0) ? 4’'b0001
((I==2"dl) 2 4'b0010
((I==2"d2) ? 4'b0100 : 4'b1000));
endmodule

Using Case and If statements

module dec 2 4 (input [1:0] I, output reg [3:0] Y);

always @ (I) always @ (I)

case (I) if (I == 27d0) Y = 47pb0001;
2'd0: Y = 4’b0001; else 1if (I == 2’dl) Y = 4'b0010;
2'"dl: Y = 4"b0010; else 1f (I == 2'd2) Y = 4"b0100;
2'd2: Y = 4'b0100; else Y = 4"p1000;
2'd3: Y = 4"b1000; endmodule
default: Y = 4"b00001;

endcase

endmodule

Verilog Random Truth Table Using a Case statement

reg [1:0] Y;
module TT 3 2 (

input [2:0] I, always @ (I)
output [1:0] Y case (I)

) ; 3'd0: Y = 4'b10;
3'dl: Y = 4"bll;
3'd2: Y = 4"b01;

Truth Table 3'd3: ¥ = 47b0l;
3'dd: Y = 4"b00;

A B C|X]|Y 3'"db: Y = 4"b10;

0 o of|1fo 3'de: Y = 4"b01;

0 0 1111 3'’d7: Y = 4'b01;

0 1 01011 default: Y = 4'b00;

0 1 1]/0]1

1 0 ololo endcase

o - b endmodule

1 1 0|01

1 1 1|01

Using Assign statement

assign X= (I==3'd0 || I==3'dl || I==3'd5) ? 1'bl : 1’b0;
endmodule

ALU Example

module alu(
input [7:0] A,B,
input [3:0] Sel,
output reg [7:0] Y
) ;

always @ (Sel, A, B)
case (Sel)

3'd0: Y = A + B;
3'"dl: Y A - B;
3'd2: Y A+ 1;
3'd3: Y A - 1;
3'"d4: Y A | B;
37db: Y A & B;
3'd6: Y A "~ B;
3'd7: Y = ~A;
default: Y = 77d0;
endcase

endmodule

Flip-Flops and Latch

module dlatch (input gate, rst, D, output reg Q);

always @ (gate, rst, D)
if (rst == 1) Q <= 1'b0;
else 1f (gate) Q <= D;

endmodule
module dff (input c¢lk, rst, D, output reg Q);

always @ (posedge(clk), posedge(rst)) always @ (posedge (clk))

if (rst == 1) Q <= 1'b0; if (rst == 1) QO <= 1'b0;
else Q <= D; D Flip-flop else Q <= D; D Flip-flop
endmodule Asynchreset endmodule

Synch reset

Counters Counter-based module clkdivider (

clock divider input clk, rst,
output reg divclk

) g

localparam terminalcount = (10000 - 1);
reg [15:0] count;

always @ (posedge(clk), posedge(rst))

begin
1f (rst) begin
Binary Counter count <= 0;
divclk <= 0;
module count (end
input cen, clk, rst, else if (count == terminalcount) begin
output reg [7:0] cnt count <= 0:
) ; divclk = !divclk;
end
always @ (posedge(clk), posedge(rst)) else count <= count + 1;
if (rst) cnt <= 0; end
else 1f (cen) cnt <= cnt+l; endmodule

endmodule

Counters Counter-based module clkdivider (

clock divider input clk, rst,
output reg divclk

) ;

“localparam” defines a local constant — helpful

localparam terminalcount = (10000 - 1);

for documentation and making changes in reg [15:01 colnt;

centralized location.

always @ (posedge(clk), posedge(rst))

begin
1f (rst) begin
Binary Counter count <= 0;
divclk <= 0;
module count (end
input cen, clk, rst, else if (count == terminalcount) begin
output reg [7:0] cnt count <= 0:
) ; divclk = !divclk;
end
always @ (posedge (clk), posedge (rst)) else count <= count + 1;
if (rst) cnt <= 0; end
else 1f (cen) cnt <= cnt+l; endmodule

endmodule

Shifters

module shiftleft(module shifter (o
input [7:0] Xin, input [7:0] datain, datain =—r=— — dataout
input [2:0] Amt, input [2:0] amt, 3
output[7:0] Xout input dir, amt ==
) ; output[7:0] dataout dir —

) ;
assign Xout = Xin << Amt;
assign dataout = (dir==1) ? datain << amt : datain >> amt;
endmodule
endmodule

module shiftright (
input [7:0] Xin,
input [2:0] Amt,
output[7:0] Xout
) ;

assign Xout = Xin >> Amt;

endmodule

State Machine Models

R

Circuit —_>

Inputs

Next-State
Logic

Next
State

State
Register |

Present

State

Output
Logic

—

Clk

RST

Mealy Model State Machine

Circuit
Outputs

Circuit »| Combo |
Inputs Logic
-> —
State ||
> Register
Clk ——

Circuit
Outputs

Next
State

Present
State

Combined Model State Machine

State Machines

LED1 Z LED1

LED2

This is a common (and good!) way to code
state machines:

1) Choose state codes, define state
localparams, and define ps and ns busses;
2) Use two always blocks — one for next-
state logic (combinational), and one for the
state register; 3) assign outputs.

module fsml (input x, vy, z, clk, rst,
output bell, ledl, 1led2);
localparam init = 2’Db00; // define state identifiers
localparam pick = 2’b01; // These are optional -
localparam left = 2’'bl0; // you could just use state
localparam right = 2’bll; // codes (binary numbers)
reg [1:0] ps, ns // define ps, ns bus signals
case (ps)
init: 1f (x == 1) then ns = pick; else ns = 1init;
pick: 1f (y == 1) then ns = right; else ns = left;
left: 1f (z == 1) then ns = right; else ns = 1init;
right: if (z == 1) then ns = pick; else ns = left;
default: ns = init;
endcase
always (@ (posedge(clk),posedge(rst))
if (rst) ps <=0; else ps <= ns;
end
bell = (ps == pick);
assign ledl = (ps == left || ps == right);
assign led?2 = (ps == right);

end module

State Machines

LED1 Z LED1

LED2

Another method is to include all
combinational assignments in the
case statement.

case

(ps)

init: begin

if (x
else
assign
assign
assign
end

ns =

bell =
ledl =
led?2 =

pick: begin

if (y
else
assign
assign
assign
end

== 1)
ns =
bell
ledl
led?2

left: begin

if (z
else
assign
assign
assign
end

== 1)

ns =

bell =
ledl =

led2

right: begin

if (z
else
assign
assign
assign
end

endcase

== 1)

ns =

bell =
ledl =

led2

then ns
left;
= 1;
= 0;
= 0;

then ns
init;

pick;

right;

right;

pick;

Simulating Verilog Source Files

Testbenches

Testbench —the basics

A testbench is a separate Verilog module written specifically to test other Verilog
modules. It uses the same statements, structures and syntax as any Verilog source file.

Testbenches do not define circuits and are not synthesized. They can use additional
unsynthesizable statements (like initial blocks and for loops) to create stimulus inputs.

* Initial blocks are like always blocks (i.e., the statements in the block are
sequential), but they are only executed once at the start of the simulation.

 For loops are useful for creating patterns, like a counting sequence that can drive
all possible input combinations, or repeating signals, like a clock signal.

A testbench module has no inputs or outputs — it doesn't need them. Instead, it will
connect to the inputs and outputs of the module being tested.

A testbench is the “top” module, and it includes/instantiates the circuit to be tested (just
like structural Verilog)

Testbench —the basics

“Executing” a testbench will cause the simulator window to open, and the simulator will
start running.

Assignment statements in the testbench define input signal values, and time statements
define how much time passes between input signal assignments.

The simulator applies the defined input values to the circuit under test and determines
how circuit nets should change in response.

Circuit inputs and outputs are shown in a waveform view window. The simulation stops
when there are no more defined input signal changes.

Input signals are treated as simulator variables that are assigned in an “initial”
procedural block. All inputs must be therefore be defined as type reg at the top of the
testbench source file.

All outputs will automatically be added to the waveform viewer; however, only the least-
significant signal in a bus will be added automatically. To see the entire bus, it must be
declared as type wire at the top of the testbench source file.

Testbench Example 4:1 Mux

Source Code

module mux4 1 (
input [3:0] I4,[1:0] sS4,
output Y4) ;

assign Y4 = T4([S4];
endmodule

Testbench Example 4:1 Mux

Source Code Testbench
module mux4 1 (module mux4 1 tb();
input [3:0] I4,[1:0] sS4,

. reg [3:0] IT;
output Y4) ; reg [1:0] ST;
assign Y4 = I4[S4];

endmodule mux4 1 cut(.I4(IT),.S4(ST),.Y4(YT));

integer k;
initial begin
IT = 4'b0110;

for (k=0; k<4; k=k+1l) begin
ST = k;
#10;
end
end
endmodule

Testbench Example 4:1 Mux

Source Code Testbench

module mux4 1 (module mux4 1 tb() ;
input [3:0] I4,[1:0] sS4, T
output Y4) ; reg [3:0] IT;

reg [1:0] ST;
assign Y4 = T4([S4];

endmodule mux4 1 cut(.I4(IT),.S4(ST),.Y4(YT));

integer k;

A testbench starts with an empty module

statement. initial begin
IT = 4'b0110;

for (k=0; k<4; k=k+l) begin
ST = k;
#10;
end

end
endmodule

Testbench Example 4:1 Mux

Source Code Testbench

module mux4 1 (module mux4 1 tb();
input [3:0] I4,[1:0] sS4,
o :] :] reg [3:0] IT;

output Y4) ;
reg [1:0] ST;
assign Y4 = T4([S4];

endmodule mux4 1 cut(.I4(IT),.S4(ST),.Y4(YT));

Simulation inputs must be declared as regs, SRS LS
so they can be assigned values in the “initia
procedural block that follows

IH

initial begin

IT = 4'b0110;

Individual output signals will automatically for (k=0; k<4; k=k+l) begin
be shown in the simulator output window; ST = k;

busses must be declared as wires following #10;
the reg declarations, or only the least end

significant bus signal will be displayed end
endmodule

Testbench Example 4:1 Mux

Source Code Testbench

module mux4 1 (module mux4 1 tb();
input [3:0] I4,[1:0] sS4,

output Y4) ; reg [3:0] IT;

reg [1:0] ST;
assign Y4 = T4([S4];

endmodule mux4 1 cut(.I4(IT),.S4(ST),.Y4(YT));

integer k;

The “circuit under test” (cut) is instantiated

using named port association. initial begin
IT = 4'b0110;

for (k=0; k<4; k=k+1l) begin
ST = k;
#10;
end

end
endmodule

Testbench Example 4:1 Mux

Source Code Testbench

module mux4 1 (module mux4 1 tb();
input [3:0] I4,[1:0] sS4,

output Y4) ; reg [3:0] IT;

reg [1:0] ST;
assign Y4 = T4([S4];

endmodule mux4 1 cut(.I4(IT),.S4(ST),.Y4(YT));

integer k;
Simulator inputs are defined in an initial - _
procedural block using blocking (=) initial begin

assignments. IT = 4'b0110:

for (k=0; k<4; k=k+1l) begin
ST = k;
#10;
end
end
endmodule

Testbench Example 4:1 Mux

Source Code Testbench

module mux4 1 (module mux4 1 tb();
input [3:0] I4,[1:0] sS4,

output Y4) ; reg [3:0] IT;

reg [1:0] ST;
assign Y4 = T4([S4];

endmodule mux4 1 cut(.I4(IT),.S4(ST),.Y4(YT));

integer k;

initial begin

!namompmmmﬁpmpb&shwbﬁmmnmx IT = 4'b0110;
inputs would be driven to a 1 and a 0 so that
proper response to all combinations of for (k=0; k<4; k=k+l1l) begin
inputs could be verified. ST = k;

#10;

end

end

endmodule

Testbench Example 4:1 Mux

Source Code Testbench

module mux4 1 (module mux4 1 tb();
input [3:0] I4,[1:0] sS4,

output Y4) ; reg [3:0] IT;

reg [1:0] ST;
assign Y4 = T4([S4];

endmodule mux4 1 cut(.I4(IT),.S4(ST),.Y4(YT));

integer k;

A for loop is often used to create sequences L _
of inputs initial begin

IT = 4'b0110;

for (k=0; k<4; k=k+l) begin
ST = k;
#10;

end

end
endmodule

Testbench Example 4:1 Mux

Source Code Testbench

module mux4 1 (module mux4 1 tb();
input [3:0] I4,[1:0] sS4,

output Y4) ; reg [3:0] IT;

reg [1:0] ST;
assign Y4 = T4([S4];

endmodule mux4 1 cut(.I4(IT),.S4(ST),.Y4(YT));

integer k;

The same sequence created by the for loop

could be created manually... but with much initial begin

greater effort. IT = 4'b0110;
ST = 2’'b00;
#10;
ST = 2'b01;
#10;
end

endmodule

Testbench Example 4:1 Mux

Source Code Testbench
module mux4 1 (module mux4 1 tb();
input [3:0] I4,[1:0] sS4,

reg [3:0] IT;

output ¥4); reg [1:0] ST;

assign Y4 = T4([S4];
endmodule mux4 1 cut(.I4(IT),.S4(ST),.Y4(YT));
integer k;
initial begin
IT = 4'b0110;

for (k=0; k<4; k=k+1l) begin
ST = k;
#10;
end

end
endmodule

Testbench Example 8:1 Mux Source (built from two 4:1 muxes)

Source Code Testbench

module mux4 1 (module mux8 1 tb();
input [3:0] I4,[1:0] sS4,

output Y4); reg [7:0] IT;

reg [2:0] ST;
assign Y4 = I4([S4];

endmodule mux8 1 cut(.IN8(IT),.S8(ST),.Y8(YT)):;

module mux8 1 (INEREET 5
input [7:0] IN8, [2:0] S8, initial begin
output Y¥8) ;
IT = 8’b10010110;
wire Y4L, Y4H;
for (k=0; k<8; k=k+1l) begin

mux4 1 Hi (.I4(IN8[7:4]),.S4(s8[1:0]),.Y4(Y4H)); ST = k;

mux4 1 Lo (.I4(IN8[3:0]),.S4(S8[1:0]),.Y4(Y4L)); #10;

assign Y8 = S8[2] == 0 ? Y4L : Y4H; =
end

endmodule endmodule

Testbench Example 8:1 Mux Source (built from two 4:1 muxes)

Source Code Testbench

module mux4 1 (module mux8 1 tb();
input [3:0] I4,[1:0] sS4,

output Y4); reg [7:0] IT;

reg [2:0] ST;
assign Y4 = I4([S4];

endmodule mux8 1 cut(.IN8(IT),.S8(ST),.Y8(YT)):;

module mux8 1 (INEREET 5
input [7:0] IN8, [2:0] S8, initial begin
output Y¥8) ;
IT = 8’b10010110;
wire Y4L, Y4H;
for (k=0; k<8; k=k+1l) begin

mux4 1 Hi (.I4(IN8[7:4]),.S4(s8[1:0]),.Y4(Y4H)); ST = k;

mux4 1 Lo (.I4(IN8[3:0]),.S4(s8[1:0]),.Y4(Y4L)); #10;

assign Y8 = S8[2] == 0 ? Y4L : Y4H; =
end

endmodule endmodule

Testbench Example 8:1 Mux Source (built from two 4:1 muxes)

module mux4 1 (module mux8 1 tb();
input [3:0] I4,[1:0] sS4,
output Y4); reg [7:0] IT;

reg [2:0] ST;
assign Y4 = I4([Ss4];

endmodule mux8 1 cut(.IN8(IT),.S8(ST),.Y8(YT));

module mux8 1 (integer k;
input [7:0] IN8, [2:0] S8, initial begin
output Y¥8) ;

i IT = 8'b10010110;
wire Y4L, Y4H;

. for (k=0; k<8; k=k+1l) begin
mux4 1 Hi (.I4(IN8[7:4]),.S4(s8[1:0]),.Y4(Y4H));

ST = k;
mux4 1 Lo (.I4(IN8[3:0]),.S4(s8[1:0]),.Y4(Y4L)); #10;
assign Y8 = S8[2] == 0 ? Y4L : Y4H; end
end
endmodule endmodule

10,000 ns] 40000 n= T0.000 ns

> NT7:0]
> W ST[2:0]

e YT
> W K[31:0]

Testbench Example 4:1 Bus Mux

module mux4 8 (input [7:0] I3, I2, I1, IO, [2:0] Sel, output [7:0] Y);
assign Y= (Sel==2'd0) ? IO : ((Sel==2'dl) ? I1 : ((Sel==2'd2) ? I2 : I3));

endmodule
module mux4 8 tb();

reg [7:0] I3, 12, I1, IO;
reg [2:0] Sel;
wire [7:0] Y;

mux4 8 cut(.I3(I3),.I2(12),.I1(I1l),.I0(I0),.Sel(Sel),.Y(Y))
integer k;
initial begin

I3 = 8'hFF;

I2 = 8'hAA;
I1 = 8'h00;
I0 = 8'h55; —
for (k=0; k<8, k=k+l) begin REEI &
Sel = k; #10; v
d > W [7:0]
e > W I0[7:0]
end > M Sel[2:0]

endmodule > W Y[7:0]
> W K[31:0]

Note the output bus (Y) is declared
as a wire/bus at the top of the

testbench file; this directs the
simulator to show the entire bus in
the waveform output window

Adding a clock

A clock signal can be created using a one-line “always block™

A 4-bit decimal counter and test bench illustrate.

module dec cnt (module dec cnt tb();
input cen, clk, rst,

1k, p T
output reg [7:0] cnt reg c cen, rs

) wire [7:0] cnt;
dec cnt c(.cen(cen),.clk(clk), .rst(rst), .cnt(cnt));
always @ (posedge(clk), posedge(rst))

nitial :
1if (rst) cnt <= 0; initial begin

else begin clk = 0;
if (cen) cnt <= cnt+l; cen = 1;
if (cnt == 4'bl1001) cnt <= 4'b0000; rst = 1;
end #10;
endmodule rst = 0;
#150;
end

always #10 clk = !clk;

endmodule

Projects and Source Files

Verilog tools organize the workspace using “Projects”. Projects contain all the source

files needed for a given design. The project is simply a directory, and all new sources
are saved in the current project.

For most projects, you will create one or more Verilog source files and one or more
Verilog testbench files. You will also need a constraints file to identify external pin
connections (you can use the same constraints file for all projects because all pin
locations on your circuit board are fixed).

All source files you create are in .../pname/pname.srcs/, where pname is your chosen
project name (the entire project path is shown at the top of the Vivado window). All

other directories and files in the project are created by the tool — you should not modify
any of them.

You can add/copy any source file from any other project into your current project from
within the Vivado tool.

End.

